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Abstract

In many application domains, the preferred approaches to numerical solution
of hyperbolic partial differential equations such as conservation laws are formu-
lated as finite difference schemes. While finite difference schemes are amenable
to physical interpretation, one disadvantage of finite difference formulations is
that it is relatively difficult to derive so-called goal oriented a posteriori error
estimates. A posteriori error estimates provide a computational approach to
numerically compute accurate estimates in the error in specified quantities com-
puted from a numerical solution. Widely used for finite element approximations,
a posteriori error estimates yield substantial benefits in terms of quantifying re-
liability of numerical simulations and efficient adaptive error control.

The chief difficulties in formulating a posteriori error estimates for finite
difference schemes is introducing a variational formulation - and the associated
adjoint problem - and a systematic definition of residual errors. In this paper, we
approach this problem by first deriving an equivalency between a finite element
method and the Lax-Wendroff finite volume method. We then obtain an adjoint
based error representation formula for solutions obtained with this method.
Results from linear and nonlinear viscous conservation laws are given.
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1. Introduction

In this paper, we derive a computable, goal-specific a posteriori error es-
timate for the Lax-Wendroff finite difference scheme for the viscous nonlinear
conservation law in one dimension,{

ut + f(u)x = εuxx, x ∈ S1, 0 < t ≤ T,
u(x, 0) = u0(x), x ∈ S1,

(1)

where ε > 0, f : R → R is smooth, and S1 is the one dimensional unit sphere,
i.e. we assume periodic boundary conditions. We also apply the estimate to an
example with ε = 0, in which case, we also assume f is convex. Periodic bound-
ary conditions greatly simplifies the presentation since boundary conditions can
introduce serious complications for hyperbolic and convection-dominated prob-
lems. Generally, a posteriori error estimates can be extended to include the
effects of error in boundary conditions and pursuing such analysis for hyper-
bolic equations is an interesting problem.

In contrast to a priori convergence and accuracy analysis, a posteriori error
estimate yields an accurate estimate of the error in information Q(u) computed
from a particular numerical solution U . The ingredients of the a posteriori
error analysis include variational analysis, adjoint operators, and computable
residuals. Computable accurate error estimates are an important component
of reliability, uncertainty quantification, and adaptive error control. Adjoint-
based a posteriori error estimation has been developed and implemented widely
over the past few decades within the finite element community [1, 2, 3, 4].
Much of the work in a posteriori error estimation has been directed towards
elliptic and parabolic problems, however there is some recent research targeting
conservation laws. Barth and Larson, [5, 6, 7], considered error estimation for
the discontinuous Galerkin method and certain Godunov methods. Other work,
[8, 9, 10, 11] has addressed adaptivity and the necessary error estimation for
various conservation laws. All of the studies for conservation laws assume the
approximate solution is obtained by a finite element method e.g., discontinuous
Galerkin. This method is well-suited for a posteriori error estimation, but it is
also relatively new.

The first methods developed for hyperbolic problems were finite difference
methods. These included methods such as Lax-Wendroff [12], Godunov [13],
MacCormack [14], upwind [15], and many others[16, 17]. See [18, 19] for a
review of some of the early finite difference schemes for hyperbolic problems.
These methods were developed to deal with hyperbolic problems, in particu-
lar, to capture discontinuities effectively. They were also developed to have low
computational cost, being explicit methods. Therefore, many large scale codes
implement these methods [20, 21, 22]. Therefore, it is useful to obtain a poste-
riori error estimates for solutions obtained by these finite difference methods

In this paper, we derive an a posteriori error estimate for the Lax-Wendroff
scheme. The main ideas of the analysis can be used to derive estimates for
other finite difference schemes, though the specific details would depend on
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the particular scheme in question. To derive the estimate, we first rewrite the
Lax-Wendroff method as a “nodally equivalent” finite element method. We then
perform an adjoint based error analysis for this finite element method, which can
then be interpreted as an estimate for the original difference scheme. The error
estimate can be partitioned into a sum of contributions, each corresponding
to specific approximations made in the discretization. This quantification of
various contributions to the error is essential to obtain an accurate estimate
and it is also useful for adaptivity, as discussed in the conclusion. Since this
scheme is explicit, we use the work of [23], where error estimation was performed
for explicit time stepping schemes for ordinary differential equations.

The structure of the paper is organized as follows. We recall the derivation
of the Lax-Wendroff scheme in Section 2. In Section 3, we formulate a finite
element method that is equivalent to the Lax-Wendroff scheme. We present
the a posteriori error estimate in Section 4. Numerical results for the linear
advection and Burger’s equations are presented in Section 5.

2. A Review of the Lax-Wendroff Finite Difference Scheme

The Lax-Wendroff scheme is an explicit second order difference scheme. As
with other simple difference schemes, simplicity of implementation is an at-
tractive feature. However, the price of higher order approximation is that the
Lax-Wendroff scheme is dispersive, which limits usefulness for problems with
shocks. Nonetheless, it is still an extremely popular method that is embedded
in many legacy codes.

We partition the temporal domain by the nodes, 0 = t0 < t1 < . . . < tN−1 <
tN = T , and define kn = tn − tn−1, while the spatial domain is partitioned by
the nodes, xM = x0 < x1 < . . . < xM−1 < xM = x0, with the uniform spatial
step h = xi − xi−1. The Lax-Wendroff scheme is originally derived for a pure
convection problem, that is (1) with ε = 0, based on a truncated Taylor series
expansion. Assuming u(x, t) is a smooth solution of (1) with ε = 0, we consider
the approximation of the solution generated by truncating the Taylor series in
time:

u(x, t+ kn) ≈ u(x, t) + knut(x, t) +
k2n
2
utt(x, t). (2)

Then, using (1), we replace all temporal derivatives with spatial derivatives,

ut = f(u)x, utt = f(u)xt = f(u)tx = (f ′(u)ut)x = (f ′(u)f(u)x)x.

Approximating the spatial derivatives with centered differences, and using sub-
scripts and superscripts to denote the finite difference approximation, we obtain
the update formula for the Lax-Wendroff method,

uni = un−1i − kn
2h

(fn−1i+1 − f
n−1
i−1 )

− k2n
2h2

[
f ′n−1i−1/2(fn−1i − fn−1i−1 ) + f ′n−1i+1/2(fn−1i − fn−1i+1 )

]
,

(3)
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for n = 1, . . . , N and i = 0, . . . ,M − 1, and

uni = u(xi, tn), fni = f(u(xi, tn)), f ′ni+1/2 = f ′(u(xi+1/2, tn)).

It is also common to approximate the propagation speed evaluated at the mid-

point by, f ′ni+1/2 ≈ f
′
(
un
i +u

n
i+1

2

)
.

To include the viscous term, we use a simple second order finite difference
approximation of the second derivative. This retains the order of the method
without adding excessive computational expense. The final Lax-Wendroff up-
date formula for equation (1) is given by,

uni = un−1i − kn
2h

(fn−1i+1 − f
n−1
i−1 )

− k2n
2h2

[
f ′n−1i−1/2(fn−1i − fn−1i−1 ) + f ′n−1i+1/2(fn−1i − fn−1i+1 )

]
+
εkn
h2

[un−1i+1 − 2un−1i + un−1i−1 ].

3. Derivation of an Equivalent Finite Element Method

The Lax-Wendroff approximation is defined on a finite set of points on the
spatio-temporal domain. In order to perform adjoint-based a posteriori error
analysis, we employ a variational formulation of the differential equation over
the entire spatio-temporal continuum. It is natural to apply this formulation to
a finite element function, which is defined at every point in space and time, but
less obvious how to apply it to a finite difference scheme directly. We approach
this issue by constructing a finite element method that agrees exactly with the
Lax-Wendroff scheme at the nodes, which we call nodal equivalence. The idea
of nodal equivalence was introduced in [23] for this purpose.

To obtain such an equivalent method, we examine the various approxima-
tions made by the Lax-Wendroff method, and incorporate them into the varia-
tional formulation of a finite element approximation. We then employ particular
quadratures to evaluate the integrals in the variational formulation, and this
yields the nodally equivalent finite element approximation.

3.1. Finite Element Discretization

We begin by stating the weak form of the viscous conservation law. Find
u ∈ H1([0, T ];H1(S1)) such that,

∫ T

0

〈ut, v〉 dt = −
∫ T

0

〈
d

dx
f(u), v

〉
+ ε

〈
d

dx
u,

d

dx
v

〉
dt,

∀ v ∈ L2([0, T ];H1(S1)),

u(x, 0) = u0(x), x ∈ S1,

(4)

where 〈·, ·〉 is the L2(S1) inner product and ε > 0.
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The finite element method we use is similar to the standard continuous
Galerkin method. Let,

V ph = {v(x) ∈ H1(S1) : v(x)|Ii ∈ Pp(Ii), i = 1, . . . ,M} (5)

where Pp is the space of polynomial functions of degree ≤ p and,

V p,qn = {g(x, t) : g(x, t) =

q∑
j=0

tjvj(x), vj(x) ∈ V ph , (x, t) ∈ Sn}, (6)

where Sn = S1 × [tn−1, tn].
We choose the approximation spaces to be second order, i.e. let p = q = 1.

We begin by defining the finite element method with exact evaluation of integrals
as: Find U(x, t) ∈ V 1,1

n such that U(x, 0) = u0(x) and,

∫ tn

tn−1

〈Ut, v〉 dt = −
∫ tn

tn−1

 M∑
j=1

〈
d

dx
Sjf(PnU), v

〉
Ij

+
kn
2

〈
f ′(PnU)

d

dx
Sjf(PnU),

d

dx
v

〉
Ij

+ ε

〈
d

dx
PnU,

d

dx
v

〉
Ij

]
dt

∀ v ∈ V 1,0
n ,

U(x, t−n−1) = U(x, t+n−1),

(7)
for n = 1, . . . , N . For simplicity, we assume that the spatial grid remains con-
stant for all time. It is possible to have spatial grids that change at each time
step by introducing a projection into the continuity condition, but it makes es-
tablishing the equivalence with an analogous Lax-Wendroff scheme significantly
more complicated.

We now introduce four changes to the ideal finite element method (7) in
order to obtain nodal equivalence to the Lax-Wendroff scheme. These are:

1. A spatial projection operator Sj ,

2. A temporal mapping Pn,

3. A “correction” term,

4. Special quadrature formulas.

The spatial approximation operator Sj : H1(Ij) → P1(Ij) is a projec-
tion onto P1(Ij). The effect is to replace spatial derivatives with finite dif-
ferences. The temporal approximation operator Pn : H1([tn−1, tn];H1(S1)) →
H1([tn−1, tn];H1(S1)) is defined by,

PnU(x, t) = U(x, tn−1).

This gives an explicit time integration scheme. Next, we introduce the nominal
correction term,

kn
2

〈
f ′(PnU)

d

dx
Sjf(PnU),

d

dx
v

〉
Ij

.
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An approximate version of this term is added to the method to correct the loss
of order that results from using the crude explicit time extrapolation operator in
order to recover second order convergence in time [24]. An analogous term arises
in the truncation error analysis of the Lax-Wendroff scheme. The last step in
constructing the finite element method is to use certain quadratures to evaluate
some of the integrals. In particular, we define the trapezoid and midpoint
quadratures by the discrete inner products 〈·, ·〉T and 〈·, ·〉M respectively. With
these changes, the finite element method is written as: Find U(x, t) ∈ V 1,1

n such
that,

∫ tn

tn−1

〈Ut, v〉T dt = −
∫ tn

tn−1

M∑
j=1

〈
d

dx
Sjf(PnU), v

〉
Ij

+
kn
2

〈
f ′(PnU)

d

dx
Sjf(PnU),

d

dx
v

〉
Ij ,M

+ ε

〈
d

dx
PnU,

d

dx
v

〉
Ij

,

∀ v ∈ V 1,0
n ,

U(x, t−n−1) = U(x, t+n−1),

(8)
for n = 1, . . . , N . This finite element method produces an approximate solution
that is nodally equivalent to a Lax-Wendroff approximation, as shown in the
following theorem.

Theorem 1 (Nodal Equivalence). If U(x, t) is a solution of (8) and {uni }
is the Lax-Wendroff finite difference approximation, then

U(xi, tn) = uni , i = 0, . . . ,M − 1, n = 1, . . . , N.

Proof
In order to show that the values U(xi, tn) satisfy the update formula (3) for

time tn to tn+1 any node xi, we choose the test function in (8) to have support
Ii ∪ Ii+1 × [tn−1, tn] i.e.,

vni (x, t) =

{
x−xi−1

h x ∈ Ii, t ∈ [tn−1, tn]
xi−x
h x ∈ Ii+1, t ∈ [tn−1, tn],

(9)

and examine and evaluate each term in (8) separately.

(i) First, the temporal derivative term:∫ T

0

〈Ut, vni 〉T dt =

∫ tn

tn−1

〈Ut, vni 〉T dt

=

∫ tn

tn−1

h

2
(Ut(xi, t) + Ut(xi, t)) dt

= h(Uni − Un−1i ),

(10)

where for notational simplicity, we define Uni = U(xi, tn).

6



(ii) The flux term: For this and the correction term we use the fact that
d
dxSjf(PnU) = 1

h (f(Un−1j )− f(Un−1j−1 )).∫ tn

tn−1

M∑
j=1

〈
d

dx
Sjf(PnU), vni

〉
Ij

dt =

∫ tn

tn−1

i+1∑
j=i

〈
d

dx
Sjf(PnU), vni

〉
Ij

dt

=

∫ tn

tn−1

1

2
(f(Un−1i )− f(Un−1i−1 )) +

1

2
(f(Un−1i+1 )− f(Un−1i )) dt

=
kn
2

(f(Un−1i+1 )− f(Un−1i−1 ))

(11)

(iii) The correction term:

kn
2

∫ tn

tn−1

i+1∑
j=i

〈
f ′(PnU)

d

dx
Sjf(PnU),

d

dx
vni

〉
Ij ,M

dt

=
kn
2h2

[∫ tn

tn−1

(f(Un−1i )− f(Un−1i−1 ))〈f ′(PnU), 1〉Ii,M

− (f(Un−1i+1 )− f(Un−1i ))〈f ′(PnU), 1〉Ii+1,M

]

=
k2n
2h

[
f ′(Un−1i−1/2)(f(Un−1i )− f(Un−1i−1 ))

+ f ′(Un−1i+1/2)(f(Un−1i )− f(Un−1i+1 ))
]
,

(12)

where Un−1i+1/2 = 1
2 (Un−1i + Un−1i+1 ).

(iv) The viscosity term:

ε

∫ tn

tn−1

i+1∑
j=i

〈
d

dx
PnU,

d

dx
vni

〉
=
ε

h

∫ tn

tn−1

(Un−1i − Un−1i−1 )− (Un−1i+1 − U
n−1
i ) dt

=
εkn
h

(−Un−1i+1 + 2Un−1i − Un−1i−1 )

(13)

Using (10)-(13) in (8) and dividing by h, we see that Uni satisfies the Lax-
Wendroff update formula and therefore that Uni = uni .
2

Given this nodal equivalence, existence and convergence properties of the
finite element method can therefore be obtained through the known properties
of the Lax-Wendroff method.

4. An Error Representation Formula

We estimate the error in a quantity of interest Q(U) specified as a linear
functional of the solution. Common quantities of interest include the average
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value, the value at a point, and various moments of the solution. We can
compute a general quantity of interest as

Q(U) =

∫ T

0

〈U,ψ〉 dt+ 〈U(x, T ), ψT 〉, (14)

for a specified function ψ and vector ψT . This general form includes a component
evaluated over the entire spatio-temporal domain and another evaluated over
space at the final time. Defining the error to be e = u − U , the error estimate
is based on an exact error representation formula for the quantity of interest
Q(e). The representation distinguishes various contributions to the error.

The error representation is given as a sum of weighted residuals, where each
residual represents a specific discretization effect while the weighting functions
are determined by the solution to an adjoint equation to (1). The abstract
adjoint equation is given by: Find ϕ ∈ H1([0, T ];H1(S1)) such that,{∫ T

0
〈v,−ϕt −A∗ ddxϕ〉+ ε〈 ddxv,

d
dxϕ〉 = 〈v, ψ〉, ∀ v ∈ L2([0, T ];H1(S1))

ϕ(x, T ) = ψT ,

(15)

where A =
∫ 1

0
f ′(su + (1 − s)U) ds. Note that the functions which define the

quantity of interest, ψ and ψT , are used as data in the adjoint equation, and
that the adjoint problem is solved backwards in time.

Nominally, the concept of an adjoint problem applies to a linear problem
and there are several ways to define an adjoint to a nonlinear problem. In the
case of a viscous conservation law, we adopt the standard technique of writing
the nonlinear flux in “linear” form using the integral mean value theorem, and
defining an adjoint with respect to this form. However, (15) cannot be solved
numerically in practice because it requires knowledge of the true solution u.
The common approach is to use the replacement

A ≈
∫ 1

0

f ′(sU + (1− s)U) ds = f ′(U)

to obtain an approximation of the adjoint problem that can be solved numeri-
cally. This substitution works well in most situations, but does become prob-
lematic in the case of a discontinuous solution, since it can lead to a significant
error in the adjoint convection coefficient.

The a posteriori error analysis using the theoretical adjoint problem (15)
yields a so-called “error representation formula”.
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Theorem 2. Let U(x, t) be a solution of (8). Then,∫ T

0

〈e, ψ〉 dt+ 〈e(T ), ψT 〉

=

N∑
n=1

∫ tn

tn−1

M∑
j=1

(
Rnj (U,ϕ− πhϕ)︸ ︷︷ ︸

Spatial Discretization

+Rnj (U, πhϕ− πkπhϕ)︸ ︷︷ ︸
Temporal Discretization

+ SE1nj + SE2nj + TE1nj + TE2nj + TE3nj︸ ︷︷ ︸
Explicit terms

+Q1nj +Q2nj︸ ︷︷ ︸
Quadrature

)
dt+ 〈e(x, 0), ϕ(x, 0)〉︸ ︷︷ ︸

Initial error

,

where the residual of the finite element method over the spatio-temporal “box”
Ij × [tn−1, tn] is defined by,

Rnj (U,ϕ) =

〈
−Ut −

d

dx
Sjf(PnU), ϕ

〉
Ij

−
〈
kn
2
f ′(PnU)

d

dx
Sjf(PnU) + ε

d

dx
PnU,

d

dx
ϕ

〉
Ij

,

and πk and πh are projections onto the temporal and spatial test spaces for the
finite element method respectively. The explicit terms are,

• Spatial Explicit Terms

SE1nj =

〈
d

dx

(
Sjf(U)− f(U)

)
, ϕ

〉
Ij

SE2nj =
kn
2

〈
f ′(U)

d

dx
Sjf(U),

d

dx
ϕ

〉
Ij

• Temporal Explicit Terms

TE1nj =

〈
d

dx
Sj
(
f(PnU)− f(U)

)
, ϕ

〉
Ij

TE2nj =
kn
2

〈
f ′(PnU)

d

dx
Sjf(PnU)− f ′(U)

d

dx
Sjf(U),

d

dx
ϕ

〉
Ij

TE3nj = ε

〈
d

dx

(
PnU − U

)
,
d

dx
ϕ

〉
Ij
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The quadrature terms are,

Q1nj = 〈Ut, πkπhϕ〉Ij ,T − 〈Ut, πkπhϕ〉Ij

Q2nj =
kn
2

〈
f ′(PnU)

d

dx
Sjf(PnU),

d

dx
πkπhϕ

〉
Ij ,M

− kn
2

〈
f ′(PnU)

d

dx
Sjf(PnU),

d

dx
πkπhϕ

〉
Ij

The first two terms on the righthand side of (16) (spatial and temporal dis-
cretization) quantify the effect of the approximation of the true solution space
by a finite dimensional finite element space. The remaining terms in (16) quan-
tify the effects of various approximations to the differential operator. The first
two terms are considered the principle “discretization” expressions. They are
affected by so-called Galerkin orthogonality, or cancelation of local discretiza-
tion errors that results from the Galerkin formulation. This is reflected in the
adjoint weights, which have the form of differences between the adjoint solu-
tion and a projection into the finite element space. This is known as “Galerkin
orthogonality”. The other terms in the error representation do not have these
projections.
Proof

We define two nonlinear forms that represent the residual for (1) and (7).

N (u, v) :=

∫ T

0

〈ut + f(u)x, v〉+ ε〈ux, vx〉 dt

NM (U, v) :=

N∑
n=1

∫ tn

tn−1

M∑
j=1

〈
Ut +

d

dx
Sjf(PnU), v

〉
Ij

+

〈
ε
d

dx
PnU −

kn
2
f ′(PnU)

d

dx
Sjf(PnU), vx

〉
Ij

dt

We now have the following relation between the residual Rnj and the above
forms,

N∑
n=1

∫ tn

tn−1

M∑
j=1

Rnj (U, v) dt = N (u, v)−NM (U, v)

= N (u, v)−N (U, v) +N (U, v)−NM (U, v)

= N ′(su+ (1− s)U, v; e) +N (U, v)−NM (U, v),

where N ′ is the Frechet derivative and,

N ′(su+ (1− s)U, v; e) =

∫ T

0

〈et + (Ae)x, v〉+ ε〈ex, vx〉 dt.
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This gives the following relation between the computable residual and the error,

NM (U, v)−N (U, v) +

N∑
n=1

∫ tn

tn−1

M∑
j=1

Rnj (U, v) =

∫ T

0

〈et + (Ae)x, v〉+ ε〈ex, vx〉 dt

(16)
Using the adjoint problem (15) and integration by parts, we have,∫ T

0

〈e, ψ〉 dt =

∫ T

0

〈e,−ϕt −A∗ϕx〉+ ε〈ex, ϕx〉 dt

=

∫ T

0

〈et + (Ae)x, ϕ〉+ ε〈ex, ϕx〉 dt+ 〈e(x, 0), ϕ(x, 0)〉 − 〈e(x, T ), ψT 〉.

Rearranging and using (16),∫ T

0

〈e, ψ〉 dt+ 〈e(x, T ), ψT 〉 = NM (U,ϕ)−N (U,ϕ)

+

N∑
n=1

∫ tn

tn−1

M∑
j=1

Rnj (U,ϕ) dt+ 〈e(x, 0), ϕ(x, 0)〉

The first two terms on the right hand side are equal to the explicit terms in
(16). Galerkin orthogonality and strategic addition of zero are used to obtain
the rest of the terms in the formula.
2

5. Numerical Results

We consider two example problems, a linear advection problem, and the
nonlinear Burgers equation. The numerical results are designed to demonstrate
the accuracy of the error estimate. We define the effectivity ratio to be,

E =
Error Estimate

Exact Error
.

To evaluate this, we construct a problem that has a specified exact solution or
we compute a highly accurate numerical reference solution that can be used
to approximate the exact error. An accurate estimator has an effectivity ratio
close to 1. We plot |1 − E| to show that this quantity is small. We also use
the estimate to investigate the relative contributions of the various components
that comprise the total error.

It is well-known that the time step must be constrained to ensure stability
when using explicit methods to solve time-dependent problems. For hyper-
bolic problems, the constraint is typically of the form kn = O(h), whereas for
parabolic problems, it is typically kn = O(h2). For ε > 0, we do not want to
simply choose the stricter parabolic bound on the time step, but use von Neu-
mann analysis to determine a condition that depends on the size of ε, i.e., the
degree of hyperbolicity or parabolicity of the problem.
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If ε = 0, that is the problem is purely hyperbolic, we use the typical CFL
condition,

kn ≤ cah,

where 0 < c < 1 is the CFL number and a = maxt∈[tn−1,tn]{f ′(u)}. For ε > 0, we
use von Neumann analysis to derive a constraint that approaches the hyperbolic
condition as ε→ 0 and approaches the parabolic condition as ε increases.

kn ≤ min
{ch2

2ε
,
∣∣∣c2(√ ε2

a4
+
h2

a2
− ε
)∣∣∣}.

This is not a strict theoretical bound, but it is adequate to maintain stability.
The numerical solution of the adjoint problem involves several steps. First,

we recall the linearization approximation, where we replace the exact lineariza-
tion operator by f ′(U) ≈ A. We must then compute an approximate adjoint
solution Φ ≈ ϕ to (15). This is used in the error representation formula (16) to
make the formula computable. Also since we project the adjoint solution onto
the finite element space in (16), we must compute Φ with a higher order method
or finer mesh. We use the third order in space and second order in time contin-
uous Galerkin finite element method to solve the approximate adjoint problem,
which allows direct evaluation of the Galerkin orthogonality weight Φ−πkπhΦ.

These choices for solving the adjoint problem work well for PDEs with
smooth solutions, but can be less effective if the solution is discontinuous, as we
illustrate in Section 5.3. In the case of pure conservation laws, the definition
and numerical solution of an appropriate adjoint problem remains an interesting
research problem.

5.1. Smooth Linear Advection

We begin by considering the linear advection problem, that is,{
ut + aux = εuxx, x ∈ S1, 0 < t ≤ T,
u(x, 0) = u0(x),

(17)

where a ∈ R denotes the velocity of propagation. We choose a = 1. When ε = 0
the solution is simply direct transport of the initial condition with constant
speed and direction. The number of spatial steps is N = 32, and the CFL
number is c = 0.95.

5.1.1. Smooth initial conditions

We first consider a smooth initial conditions, u0(x) = sin(πx). We choose
ε = 0.01 to obtain a convection dominated problem. The quantity of interest is
a point value at a final time, and we estimate the error for multiple final times
T . Fig. 1 plots the error in the effectivity ratio |1− E|, against the final time,
while Fig. 2 plots the various error contributions against the final time. The
error estimator is extremely accurate, at least four digits, for this problem. The
error in the effectivity increases monotonically as we solve to greater final time,
but not rapidly and is still roughly as accurate.
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Figure 1: Error in the effectivity ratio for the linear advection problem. The initial data is
defined as u0 = sin(πx) with coefficients a = 1, ε = 0.01. The quantity of interest is a point
value at the final time.
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Figure 2: Error contributions for the linear advection problem. The initial data is defined as
u0 = sin(πx) with coefficients a = 1, ε = 0.01. The quantity of interest is a point value at the
final time.

While derivation of the a posteriori estimate presented above nominally does
not hold for ε = 0, this case is often the primary focus in practice. We examine
the estimate’s behavior in this case. The results are comparable to the viscous
case presented above. The effectivity ratio is of the same accuracy, though it
remains constant instead of growing with time, and the error contributions are
very similar.

We also consider the rate of convergence of the various error contributions.
Figs. 3 shows how each contribution converges. Of particular interest are the
explicit contributions. Both the spatial and temporal explicit contributions
converge to first order, however, due to cancelation, their sum converges to
third order. This illustrates a property of the Lax-Wendroff method, in which
first order spatial and temporal approximations are combined to form a higher
order method. We also note that the total error estimate converges to second
order, as expected for the Lax-Wendroff scheme.
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Figure 3: Error contributions of the error estimate versus number of spatial steps. Linear
advection with initial data u0(x) = sin(πx), a = 1 and ε = 0. Quantity of interest is a point
value at final time.
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Figure 4: Error in the effectivity ratio for the linear advection problem. The initial data is a
top hat function with coefficients a = 1, ε = 0. The quantity of interest is a point value at the
final time.

5.1.2. Effect of explicit time integration

Examining the individual error contributions, we see that the explicit error
dominates for both the inviscid and viscous linear advection problems. However,
a good deal of cancelation occurs between the spatial and temporal explicit
errors, and so when the total explicit error is considered, it is comparable to the
other error contributions.

5.1.3. Discontinuous Linear Advection

We next consider linear advection with a discontinuous initial condition,
and no diffusion. We test the error estimator with a quantity of interest at the
points of discontinuity at the final time. Fig. 4 shows the error in the effectivity
and the exact error. Fig. 5 shows the various error contributions. We see that
error in the effectivity is considerably higher than for smooth initial conditions.
However, the error is still estimated to roughly one digit, and so is relatively
accurate.
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Figure 5: Error contributions for the linear advection problem. The initial data is a top hat
function with coefficients a = 1, ε = 0. The quantity of interest is a point value at the final
time.
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Figure 6: Exact solution of the viscous Burger’s equation with initial data u0(x) = sin(πx)
and viscosity coefficient a) ε = 0.15 and b) ε = 0.01.

5.2. Viscous Burger’s Equation

The second example is Burger’s equation,{
ut +

(
1
2u

2
)
x

= εuxx, x ∈ S1, 0 < t ≤ T,
u(x, 0) = u0(x).

(18)

We begin by demonstrating the effectiveness of the error estimator on a
smooth, diffusion dominated problem. We use initial data u0(x) = sin(πx), and
viscosity coefficient ε = .15. The exact solution is plotted for various times in
Fig. 6. The a quantity of interest is the point value at x = 1 at the final time.
The number of spatial steps and CFL number are the same as for the linear
example above. Fig. 7 plots the error in the effectivity ratio, and Fig. 8 plots
the various error contributions. We present the signed errors in this case to
show how the various contributions can cancel and combine to determine the
total error. The error contributions have all roughly the same magnitude and
there is no significant cancellation.

Of particular interest is the temporal explicit error contribution. We see here
that it dominates and there is no significant cancellation between it and the spa-
tial explicit contributions. For this example, the error could be reduced by using
an implicit method, essentially eliminating the temporal explicit contribution.
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Figure 7: Error in the effectivity ratio. Burgers equation with initial data u0(x) = sin(πx),
ε = 0.15. Quantity of interest is a point value at the final time.

Next we decrease the viscosity coefficient and consider the accuracy of the
error estimator as the problem becomes convection dominated on a fixed mesh.
As ε → 0, the solution forms a sharper and sharper internal layer. The exact
solution for ε = 0.01 is shown in Fig. 6. This sharp gradient makes it difficult to
estimate the error, due to the fact that the solution fails to be resolved at some
point since the fixed mesh becomes too coarse. This increases the linearization
error which leads to error in the adjoint solution. The adjoint solution at time
t = 0 is plotted in Fig. 9. Note that the error is highly sensitive near where the
shock is forming. Fig. 11 shows the error in the effectivity ratio as ε varies. We
clearly see a reduction in the accuracy of the error estimator as ε → 0, due to
the error in the adjoint solution.

However, we see that the estimator is accurate for ε > 0.02, therefore we
examine the contributions to the error as ε decreases to this value. Fig. 10
shows the error contributions as ε decreases. From this plot we can obtain some
interesting information about the error. We see that the temporal discretization
error becomes significant and temporal explicit error contribution dominates as
ε→ 0.
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Figure 8: Error contributions. Burgers equation with initial data u0(x) = sin(πx), ε = 0.15.
Quantity of interest is a point value at the final time.
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Figure 9: Solution of adjoint problem at final time for Viscous Burgers equations with ε = 0.1.
Quantity of interest is a point value at the final time.
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Figure 10: Error contributions. Burgers equation with initial data u0(x) = sin(πx) as ε → 0.
Quantity of interest is a point value at the final time.

5.3. Inviscid Burger’s Equation

We next consider inviscid Burgers equation, this is (18) with ε = 0. A well
known property of this problem is that the solution can become discontinuous
in finite time, even with smooth initial data.

Since the Lax-Wendroff is a conservative method, and d
dt

∫
S1 u(x, t) dx =

0 should hold in a discrete sense. If the initial condition can be represented
by the approximation space, then for a conservative method the error in a
quantity of interest defined by ψ = 1, ψT = 0 should be zero up to machine
precision. Using this quantity of interest, we show that not only is the analogous
finite element method nodally equivalent to Lax-Wendroff, it also preserves the
discrete conservative property. We use piecewise linear continuous initial data,
shown in Fig. 12, which can be represented exactly in the finite element space.
Table 1 shows the estimated error in the quantity of interest. This demonstrates
the accuracy of the error estimator. The approximate solution obtained from the
Lax-Wendroff method is also shown in Fig. 12. Note that while considerable
oscillations occur around the point of discontinuity, they are generated in a
particular way so that the quantity is conserved.

Finally we consider a problem in which a shock forms from smooth initial
conditions u0(x) = sin(πx). In this problem a stationary shock forms at x = 0
at time t = 1

π . As above, we choose the quantity of interest to be a point value
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at the final time, in particular at x = 0, and examine the effectivity ratio for
various final times. Fig. 13 shows the error in the effectivity ratio as a function
of the final time. The time when the shock is formed is marked on the plot.

We see that after the formation of the shock, the error estimate is no longer
reliably accurate. A significant factor appears to be “linearization error” in the
formulation of the computational adjoint problem. We see this by considering
the linearized coefficient A(x) in the adjoint problem at the point of disconti-
nuity. By taking the limit from the left and right side of the shock, we see,

lim
x→1−

A(x, t) =

∫ 1

0

f ′(suL + (1− s)U(0, t)) ds,

lim
x→1+

A(x, t) =

∫ 1

0

f ′(suR + (1− s)U(0, t)) ds,

where uL and uR are the limiting values of the exact solution at the left and right
of the shock. The problem being that the exact solution is discontinuous, and
the approximate solution is piecewise smooth. Therefore, when we approximate
A with f ′(U), we introduce an error of O(|uL − uR|). So for strong shocks, like
the one in this problem, the linearization error is likely to be large and this could
make the adjoint solution highly inaccurate, thus destroying the accuracy of the
error estimator. This provides motivation to consider some of the alternate ways
to define adjoints to nonlinear operators [25].

6. Conclusions

In this work, we derive an a posteriori error estimator for the Lax-Wendroff
method. To do this, we derive a finite element method that is nodally equivalent
to the Lax-Wendroff method, and perform error estimation on the finite element
approximation.

We show that the error estimator works well under expected conditions, that
is diffusion dominated nonlinear problems and smooth linear problems. We also
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Figure 11: Error Contributions as a function of ε. Burgers equation with initial data u0(x) =
sin(πx). Quantity of interest is a point value at the final time.
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Figure 12: (Left) Piecewise linear initial conditions used to test conservative property of Lax-
Wendroff. This is chosen so that it can exactly represented by the finite element space. (Right)
Lax-Wendroff approximation at final time T = 3.

N Error Estimate
8 2.259e-16
16 4.906e-16
32 2.708e-16
64 1.398e-15
128 1.794e-15

Table 1: Test of conservativeness of Lax-Wendroff

see that the error estimator works for linear problems with discontinuous solu-
tions, though not as well as for smooth data. However, for nonlinear problems,
such as Burger’s equation, we see that the estimator fails when shocks begin to
form. This may be due to linearization error in the formulation of the adjoint
problem, which provides motivation for further study of an appropriate choice
of adjoint problem for problems with shocks.

A possibility for future work in this area is adaptivity. The error estimator
can be used for classical mesh refinement adaptivity. However, the splitting of
the error into various contributions allows for a type of adaptivity where the
method itself changes on certain portions of the domain to reduce the error. This
was illustrated in [23] for ODEs. By modifying the approximating operators Sj
and Pn and the quadrature rules on different intervals, a different method can
be used on each interval. If these methods are chosen to reduce the dominating
error contributions, i.e. a higher order quadrature rule when the quadrature
contribution is too large, then the total error can be reduced for less computation
cost than refining the grid. This is especially true for hyperbolic problems, as
it is not possible to refine the temporal and spatial components of the grid
independently due to stability constraints.

19



0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.510−4

10−3

10−2

10−1

100

101

Figure 13: Effectivity error for inviscid Burger’s equation with initial condition u0(x) =
sin(πx). The dotted line denotes time when shock forms in solution.
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