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Abstract

A simple mathematical model of laser drilling is proposed. Assuming axi-symmetry
of the process around the axis of the laser beam, a one-dimensional formulation
is obtained after cross-sectional averaging. The novelty of the approach relies on
the fact that even after dimension reduction, the shape of the hole can still be
described. The model is derived, implemented and validated for drilling using lasers
with intensities in the GW/cm2 range and microsecond pulses.
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1 Introduction

Laser drilling is an important industrial process by which laser pulses are used
to drill holes in hard materials. It presents several advantages over conventional
techniques such as low heat input into the material, accuracy, consistency, ease
to automate and ability to drill very small holes of the order of 10 microns in
diameter. This technique is used either with single or multiple pulses.

∗ Corresponding author.
Email addresses: jbcolli2@ncsu.edu (Jeb Collins), gremaud@ncsu.edu (Pierre

Gremaud).
1 Partially supported by the National Science Foundation (NSF) through grants
DMS-0636590 and DMS-0811150
2 Partially supported by the National Science Foundation (NSF) through grants
CMMI-0738044, DMS-0636590 and DMS-0811150

Preprint submitted to Mathematics and Computers in Simulation 23 March 2009



10!10 10!210!410!810!1010!12 10010!610!14102

104

106

108

1010

1012

1014

interaction time (sec)

po
w

er
 d

en
si

ty
 (W

/c
m

2 )

heating

melting

vaporizing

present experiment

Fig. 1. Approximate range of various regimes for laser ablation (adapted from [9]).

During drilling, material is removed from the workpiece through two mecha-
nisms: vaporization and melt ejection. The relative importance of each mech-
anism has been the object of several theoretical studies, see for instance [13].
Some authors have also developed more phenomenological criteria [9], see Fig-
ure 1. In the case of thermal ablation (roughly the lower left part of Figure 1),
the interaction of the laser with the material surface creates a molten pool. As
some of the material vaporizes, the pressure of the vapor (recoil pressure) is
large enough to push the melt radially outward from the center of the beam,
leading to melt ejection. On the other hand, in so-called non-thermal ablation
(roughly the upper right part of Figure 1), which corresponds to higher melt
surface temperature, the main process by which melt is removed is through
evaporation instead of convection as the material vaporizes before it can get
convected in any significant way.

The mechanisms involved in laser drilling have been described by previous
authors [1,7,8,11,13,15,16] to cite but a few. The main contribution of the
present paper is the construction and implementation of a new simple model to
predict penetration depth and hole diameter in a specific regime corresponding
to a relatively powerful laser, with power density in the GW/cm2 range, used
in conjunction with microsecond pulses, see Section 4 for details, see also
[5] for general remarks on this regime. Figure 1 illustrates where the case(s)
considered here stand(s) in relation with other applications; see for instance
[4,12] for recent models dealing with TW/cm2 power densities and pico or
femto second pulses.

Many practical questions remain open such as the determination of optimal
firing schedules or the mitigation of instabilities leading to poor quality holes.
Our approach leads to a model amenable to either optimization or stabil-
ity studies. The proposed model is based on several simplifying assumptions
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which are detailed in Section 2. The process is also considered to be fully
axisymmetric along the axis of the laser beam. The model is made pseudo
one-dimensional through the use of a cross-sectional averaging. However, in
the present model, various polynomial hole shapes can still be considered. The
aspect ratio is a model parameter that is determined based on the available
experimental data. Implementation is described in Section 3. Our results are
discussed in Section 4 together with comparison with experimental data.

2 Mathematical modeling

2.1 Heat transfer

We assume the workpiece to be homogenous and the laser beam to have a
Gaussian intensity distribution. Under these conditions, the entire process can
be considered axi-symmetric. Working with a cylindrical coordinate system
(r, θ, z) centered on the laser with z pointing down, energy conservation takes
the form the classical heat equation

ρscs
∂T

∂t
= ks

[
1

r

∂

∂r

(
r
∂T

∂r

)
+

∂2T

∂z2

]
r > 0, z > 0, t > 0, (1)

where T is the temperature, ρs, cs and ks are respectively the density, heat
capacity and thermal conductivity of the solid material and are in first ap-
proximation considered constant. If W stands for the intensity or power flux
of the laser, we have in the first stages of the process

ks
∂T

∂z
= −W. at z = 0. (2)

Typical values for the above parameters are given in Table 1. It is important to
note that vertical and radial diffusions play very different roles for the regime
in which we operate. This can be seen by non-dimensionalizing the above
equation. To this end, we introduce r?, z? and t? typical values of respectively
r, z and the time t

r? = Rb, z? =
k(Tv − Tm)

W
, t? = ρscsks

(Tv − Tm)2

W 2
,

where Rb is the diameter of the beam, and Tm and Tv are respectively the
melting and vaporization temperature, see again Table 1. We now rewrite (1)
in terms the non-dimensional variables

r̄ =
r

Rb

, z̄ =
z

z?
, T̄ =

T − Tm

Tv − Tm

,
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and get, omitting the bars

∂T

∂t
= ε

1

r

∂

∂r

(
r
∂T

∂r

)
+

∂2T

∂z2
,

where

ε = k2
s

(Tv − Tm)2

R2
bW

2
≈ 10−8.

Radial diffusion plays therefore a secondary role. Based on this, we construct a
family of pseudo one-dimensional models obtained from radial averaging. More
precisely, let s(z, t) be the assumed radius of the hole at depth z and time t
and let ξ(t) be the maximal depth of the hole at time t, i.e., the depth along
the z-axis. Three different following profiles are implemented, see Figure 2

• constant profile s∞(z, t) =

κ∞ ξ(t) if z < ξ(t),

0 if z ≥ ξ(t),

• conical profile s1(z, t) =

κ1(ξ(t)− z) if z < ξ(t),

0 if z ≥ ξ(t),

• parabolic profile s2(z, t) =

κ2

√
ξ(t)2 − ξ(t)z if z < ξ(t),

0 if z ≥ ξ(t).

Defining more generally

s`(z, t) =

κ`

(
ξ(t)` − ξ(t)`−1z

)1/`
if z < ξ(t),

0 if z ≥ ξ(t),

the case of the piecewise constant profile s∞ can be viewed as a singular limit
of the other cases

s∞(z, t) = lim
`→∞

s`(z, t).

For future reference, we denote by R the radius of the hole at z = 0, i.e., we
set R(t) = s(0, t). The aspect ratios κ∞, κ1 and κ2 are considered constant;
proper corresponding values will be determined below.

In agreement with Figure 1, we consider only the vaporization process. Nu-
merical tests were ran with and without liquefaction and confirmed the very
secondary role played by it in the present context. The boundary condition
corresponding to the phase change is a Stefan-like boundary condition. More
precisely, on the interface, i.e., for (r, z) = (ρ(z, t), z), we have

ks∇T · n = −Wnz + ρsLvu · n, (3)

where Lv is the latent heat of vaporization, n is the unit normal vector to
the interface into the solid and u is the local velocity of the interface at the
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Fig. 2. Assumed hole shapes; left: cone, right: paraboloid.

considered point. The evaluation of u is delicate in the present framework as
there is no obvious way to track a material point on the interface. In other
words, there are many ways to map the interface at time t, i.e.,

{(r, z); 0 < z < ξ(t), r = s(z, t)},

to the interface at time t+dt. In first approximation, we choose to neglect the
radial component of the local velocity in the Stefan condition (3). More pre-
cisely, consider a point on the interface at time t with coordinates (r(t), z(t))
where r and z are related by

r − s`(z, t) = 0, (4)

which can be equivalently expressed as

z = ξ(t)− 1

κ`
`

r`

ξ(t)`−1
. (5)

Under the above assumptions, the velocity u of the considered interface point
(r, z) is then approximated by

u ≈ [0, ż] ≈
[
0, ξ̇

(
1 + (`− 1)(

r

κξ
)`

)]
≡ [0, uz], (6)

where the last expression corresponds to the time derivative of (5), neglecting
the radial contribution.
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Following the above remark on radial vs. vertical diffusion, we neglect the r
dependencies in (3) and obtain

ks
∂T

∂z
(s(z, t), z, t) = −W + ρsLvuz. (7)

For any axi-symmetric field V (r, θ, z, t) = V (r, z, t) defined in the computa-
tional domain, we denote by V̄ the corresponding radially averaged field

V̄ (z, t) =
2

R(t)2 − s(z, t)2

∫ R(t)

s(z,t)
V (r, z, t)rdr.

By applying averaging to (1) and neglecting the terms T̄ − T (s(z, t), z, t) and
T̄ − T (R, z, t), we obtain after some algebra

∂T̄

∂t
= α

(
∂2T̄

∂z2
− 4 ss′

R2 − s2

(
∂T̄

∂z
− ∂T (s, z, t)

∂z

))
z > 0, t > 0,

where α = ks

ρscs
, ∂T

∂z
is defined in (7) and s′ denotes the spatial (z) derivative

of s. The full averaged problem becomes

∂T̄

∂t
= α

(
∂2T̄

∂z2
− 4 ss′

R2 − s2

(
∂T̄

∂z
+

1

ks

(W − ρsLvuz)

))
, z > 0, t > 0, (8)

ks
∂T̄

∂z
= −W + ρsLvuz, z = 0, t > 0, (9)

lim
z→∞

T̄ = T0, t > 0, (10)

T̄ (·, 0) = T0, z > 0, (11)

where the boundary condition (9) results from the right hand side of (7) being
independent of z and where T0 is the ambient temperature. In the singular
limit corresponding to the piecewise constant profile ρ∞, equations (8) and (9)
take the form

∂T̄

∂t
= α

∂2T̄

∂z2
, z > ξ(t), t > 0, (12)

ks
∂T̄

∂z
= −W + ρsLvuz, z = ξ(t), t > 0. (13)

2.2 Knudsen layer jump conditions

The high power of the laser results in rapid evaporation of the workpiece.
While the vapor near the evaporation interface is not in thermal equilibrium,
it reaches thermal equilibrium after only a few mean free paths. This thin layer
out of thermal equilibrium is called the Knudsen layer. The lack of equilibrium
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implies that the state variables change quickly in that region. Following [8],
we assume the Knudsen layer to be infinitesimally thin and that the state
variables jump between the solid and vapor side of the Knudsen layer .

Mass, momentum and energy must be conserved across the Knudsen layer.
Further, by assuming the vapor to have a half Maxwellian distribution func-
tion and all back-scattered particles to condense, jump conditions for the tem-
perature and density can be derived, see [8] for full details

√
T∗
Ts

=

√√√√1 + π

(
m(γ − 1)

2(γ + 1)

)2

−
√

π
m(γ − 1)

2(γ + 1)
, (14)

ρ∗
ρe

=

F− +

√
T∗
Ts

G−

2e−m2 T∗
Ts

, (15)

where T∗ and ρ∗ are the temperature and density on the vapor side of the
Knudsen layer while Ts is the temperature of the workpiece near the Knudsen
layer determined from the heat transfer problem; ρe, which depends on Ts, is
the saturation density and is discussed below. We assume the metal vapor is
to be monatomic and thus the ratio of specific heat in the vapor, γ has value
1.67; in the ambient air, that value is γ = 1.4 [10]. The extra parameter in (14)
and (15) is the dimensionless evaporation rate m. Finally, the two auxiliary
functions F− and G− are defined by

F− = e−m2 −
√

πm erfc(m), (16)

G− = (2m2 + 1) erfc(m)− 2√
π

me−m2

. (17)

The saturation pressure pe can be related to the surface temperature Ts

through the Clausius-Clapeyron relation [2]

pe = p1 exp
(

Lv

R1

(
1

Ts

− 1

T1

)
)

, (18)

where T1 is the value of Ts required to produce a vapor pressure of p1, the
ambient pressure and R1 is the specific gas constant, i.e., R1 = R/Mmol,1
where R is the universal gas constant and Mmol,1 is the molar mass of the
considered gas. Here, we use the ambient air, region 1 in Figure 3, as a reference
state. Using the ideal gas law, pe can then related to ρe, i.e.

pe = ρeR3Ts. (19)

Even together with (18) and (19), the jump relations (14) and (15) are not
enough to determine T∗, ρ∗, on the vapor side of the Knudsen layer, given
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similar data on the solid side since they contain the unknown dimensionless
evaporation rate m. We close the system by considering the Euler equations
of gas dynamics in the vapor [1,8,10]

∂tρ + ∂z(ρu) = 0,

∂t(ρu) + ∂z(ρu2 + p) = 0,

∂tE + ∂z((E + p)u) = 0,

where ρ is the density of the vapor, u its velocity and p = p(ρ, E) its pressure;
E is the total energy. Kinetic theory does not allow the vapor near the Knudsen
layer to be supersonic [16].

This implies that we must use two cases to solve for the states, one when the
vapor is subsonic or sonic and one when it is supersonic. In the subsonic case,
the vapor can be represented by the diagram in Figure 3, left, and we can close
our system for m by invoking the Rankine-Hugoniot jump conditions of the
Euler gas dynamics equations. In the supersonic case, the vapor is represented
by Figure 3, right. In that case, a rarefaction wave takes the vapor from the
sonic state at the Knudsen layer to a supersonic state away from the Knudsen
layer. To close the system in the supersonic case we must use both the Riemann
invariants across the rarefaction fan and the Rankine-Hugoniot conditions. As
shown in Figure 9 from Section 4, the supersonic case applies during most of
the experiment simulated here.
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Fig. 3. Diagrams of gas regions.

Starting with the subsonic case, Figure 3 shows that the gas has three regions
that are separated by a contact discontinuity and a shock. The region closest
to the Knudsen layer, which we have labeled 3, is vapor. Region 2 is also
compressed air, and is separated from region 3 by a contact discontinuity, i.e.,
both the pressure and velocity are equal in region 2 and 3

p2 = p3 and u2 = u3.
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Region 1 is ambient air, which is separated from the compressed air by a
shock wave. The final equation, to close the system for m, is obtained from
the Rankine-Hugoniot jump condition across this shock wave. After much
algebraic manipulations, we obtain

p3

p1

= 1 + γ1

√
2

γ3

c3

c1

m

 m

2
√

2

γ1 + 1
√

γ3

c3

c1

+

√√√√1 +
2

γ3

(
γ1 + 1

4

c3

c1

m
)2

 (20)

where ci =
√

γiRiTi is the speed of sound and the subscripts indicate the
region the variable represents. The value of p1 is known since it is the pressure
of the ambient air. The ideal gas law yields

p3

pe

=
ρ3

ρe

T3

Ts

. (21)

Using (14), (15), (18) and (20) to respectively express the ratios T3

Ts
, ρ3

ρe
, p1

pe
and

p3

p1
, relation (21) results in an equation containing only the unknown dimen-

sionless evaporation rate m and Ts which we assume known at this stage.

In the supersonic case, as shown in Figure 3, most of the structure of the gas
dynamics is the same, except for the creation of an additional region after the
rarefaction fan. The region near the Knudsen layer, now labeled 4, is sonic

and so we can determine all of the states in this region by letting m =
√

γ3/2,
which corresponds to a Mach number of one. The states we are now looking for
are those downwind of the rarefaction fan. Using Riemann invariants from the
Euler gas dynamics equations, which are constant throughout a rarefaction
wave, we gain a relationship between p3 and p4,

p4

p3

=
(

c4

c3

)2γ3/(γ3−1)

=

( √
2

γ3 + 1

(√
2 +

γ3 − 1
√

γ3

m

))2γ3/(γ3−1)

. (22)

Equation (20) still holds because the relationships between region 1, 2 and
3 are unchanged. In the present supersonic case, however, the sound speed
c3 cannot be derived from (14) since region 3 is no longer at the Knudsen
layer. Since region 4 is sonic, the corresponding state can be determined and
consequently, the value of c3 can be obtained from

c3

c1

=

√
γ3R3

γ1R1

Ts

T1

T4

Ts

(
c4

c3

)−1

,

together with (22). Finally, similarly to the subsonic case, we obtain a nonlin-
ear equation for m by expressing the ratios in the trivial relation

pe

p1

=
p4

p3

p3

p1

(
p4

pe

)−1

, (23)
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using the above remarks.

Once we solve for m, we calculate the thermodynamic state variables Tg and
ρg on the vapor side of the Knudsen layer which will be used in the update of
the interface speed.

2.3 Interface Speed Update

The final component in our model is the update of the speed U = ξ̇ of the
interface. Using the continuity equation and the assumption that the distri-
bution function for the vapor is Maxwellian, one obtains [16].

U =
1

ρs

ρe

√
TsR
2π

− ρg

√
TgR
2π

F−β(m)

 , (24)

where

β(m) =

2(2m2 + 1)

√
T∗
Ts

− 2
√

πm

F− +
√

T∗
Ts

G−

ρe is the saturation density, Tg and ρg are the vapor temperature and density
calculated from the Knudsen layer jump conditions, and Ts is the temperature
of the workpiece near the Knudsen layer.

3 Implementation

The implementation follows the previous section as shown in Figure 3. The
process is started with initial values for the temperature field, T0, the speed of
the interface U and the velocity of the vapor. Of these, only T0 has an essential
meaning, the other two being numerical auxiliary quantities. To advance the
solution by ∆t > 0 in time, the following steps are considered.

Step 1 Given U and the current temperature T n, we solve for T n+1, solution
to the heat transfer problem ((8)-(11) or (12), (13), (10), (11) for ` → ∞)
from time t to t+∆t with initial condition T0 = T n. The value Ts is obtained
by averaging T n+1 over the free boundary.

Step 2 Given Ts and the current velocity of the gas to determine whether the
flow is subsonic or supersonic, we solve the Knudsen layer jump condition,
i.e., either (21) or (23), for m.

Step 3 Given m, the state variables for the vapor can be computed and F(U),
the right hand side of (24), can be evaluated .
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Yes
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time step

Fig. 4. Flow of the model.

The entire process of taking a new step in time can thus be viewed as finding
a fixed point U such that

F(U) = U, (25)

which has to solved by an iterative method. We choose to use the secant
method to solve for U , as it is a gradient free method. The code has therefore
two nested iterations, one for the time step, and an inner iteration for the
convergence of the secant method. In the tests below, it takes less then 5
iterations to converge to a suitable value for U , using an error tolerance of
UTOL = 1 × 10−8. Our convergence condition is |Uc−U+|

U+
< UTOL. Figure 5

illustrates the generic behavior of F at a given time. The physical solution is
the smallest of the two.

In line with the simplicity of the present approach, the heat transfer problem
is discretized through standard second order finite differences in spaces and
first order backward differences in time. The spatial domain is 5× 10−4m and
the number of spatial nodes used below is N = 1000. An implicit temporal
discretization is chosen for stability purposes. For the experiments at hand,
a time step ∆t = 10−9sec is appropriate. Since the heat transfer equation is
linear, we solve it with a tridiagonal solver at each time step. To determine
the value of Ts for the radial averaging methods, we average the temperature
over the interface surface. To integrate the temperature, a simple numerical
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Fig. 5. Plot of the fixed point function at time t = 1× 10−7 sec. The line F(U) = U
is also plotted to show the existence of a fixed point.

quadrature (midpoint rule) is used.

To solve for m in the Knudsen layer jump conditions, we use the Newton
nonlinear solver with Armijo line search [6]. The initial iterate is taken from
the value at the previous time step. With an absolute tolerance of 10−7, the
algorithm converges in less than 10 iterations. Until the Mach number get
above 1.5, the subsonic equations are solved first; if this results in a Mach
number above unity, we then solve the supersonic equations.

Finally, the aspect ratio κ needs to be determined. Denoting here by dh and rh

the hole depth generated by one of our models and the corresponding radius,
we determine κ so as to minimize

J(κ) =

(
dh − dexp

dexp

)2

+

(
rh − rexp

rexp

)2

,

dexp and rexp being the experimental values of the hole depth and radius. We
use a Nelder-Meade optimization method to minimize the above function, and
it takes about 15 function evaluations to find the minimum.

4 Results

The above method is considered to simulate laser drilling in 316 stainless steel.
The relevant material properties are given in Table 1.

The experimental data are taken from [5,14] where a Yb-doped fiber laser is
used. Measurements using a photodiode sensor reveal that the power profile
consists of an initial spike of about 1µs with an output power typically larger
than the rated power of the laser, followed by a slowly decreasing quasi steady-
state plateau which is lower than the rated output and lasts about 4µs. This
type of profile is typical of fiber lasers. The laser pulse power profile used in
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density ρs 7500 kg/m3 heat capacity cs 630 J/kg K

melting temp. Tm 1400 ◦K vaporization temp. T ?
v 3134 ◦K

thermal conductivity ks 29 W/m K latent heat of fusion Lf 2 ×105 J/kg

latent heat of vap. L†
v 7.6 ×106 J/kg beam diameter 10 µm

Table 1
Material properties of 316 stainless steel and laser parameters; the “star values” are
estimated from measured values for iron, the “dagger” values are estimated from
304 stainless steel [3].

our model is an approximation of the true laser profile. Both power profiles
are shown in Figure 6.
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Fig. 6. (a) The true power profile used in experiment. (b) The approximate power
profile used in our model.

The surface temperature of the workpiece at the vapor interface is displayed in
Figure 7 for all three assumed geometries described in Section 2, i.e., conical
(` = 1), parabolic (` = 2) and purely one-dimensional (` →∞).
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Fig. 7. The surface temperature of the workpiece(Ts) as a function of time; (a)
purely one-dimensional profile (` → ∞), (b) conical (` = 1) and parabolic profiles
(` = 2).
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The speed of the interface is shown in Figure 8. Significantly, the purely one-
dimensional model “misses” the initial spike in velocity that the two other
models predict
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Fig. 8. The speed U of the vapor interface as a function of time; (a) purely one-di-
mensional profile (` →∞), (b) conical (` = 1) and parabolic profiles (` = 2).

Figure 9 illustrates the fact that, as mentioned in Section 2, the supersonic
case applies during most of the experiment.
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Fig. 9. Evolution of the Mach number; the flow is mostly supersonic.

The most critical aspect of the problem is the determination of the drilling
depth. In the experiment considered here, the depth of the hole is measured
post drilling through careful grinding of the workpiece along vertical planes
until the hole is made visible. While delicate, this measurement is one of the
few reliable available experimental data. Table 2 lists our results.

The position of the interface as a function of time is displayed in Figure 10. The
results of the purely one-dimensional formulation (` → ∞) underestimates
the depth of the hole. The radially averaged models preform better since some
of the geometry of the hole is incorporated into the model. These models
also allow us to use a Gaussian profile for the laser beam, which is what is
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Hole Depth Hole Radius

Experimental Data 136 µm 11.5 µm

One-d. profile (` →∞) 80 µm

Conical profile (` = 1) 133 µm 11.1 µm

Parabolic profile (` = 2) 127 µm 10.5 µm
Table 2
Experimental and numerical results.

used experimentally. There is no significant difference between the cone and
paraboloid models.
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Fig. 10. Position of the vapor interface as a function of time. (a) is the two-phase
model. (b) is the radially averaged models.

5 Conclusion

The proposed model, while numerically inexpensive, is in good agreement
with the available data, establishing the feasibility of the proposed approach.
However, additional work is needed to fully assess the extent of its range of
validity. For the present type of applications, measurements are in fact quite
delicate; this includes not only the measurements of state variables such as
the temperature but also of physical properties such latent heat of vaporiza-
tion for instance. Given this type of uncertainties, we expect Verification and
Validation to play an increasing role in the future for the type of industrial
applications considered here. A simple model such as the one proposed is ideal
for that purpose.
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