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Abstract In this work we consider a posteriori error analysis of approxima-
tions of ordinary differential equations obtained via an explicit finite difference
method. Two classes of finite difference methods are reformulated as finite el-
ement methods to allow for this analysis. The error is separated into various
contributions, each corresponding to a different type of approximation used
in the method. Examination of these contributions are used to determine the
optimal method of adaptation to reduce the error. Also, a modified adjoint
is formulated corresponding to the explicit method and is used to determine
when the method is numerically stable for a given quantity of interest.
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1 Introduction

We develop and test a posteriori error estimates for a wide class of explicit
time integration schemes for an ordinary differential equation: Compute y ∈
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C1([0, T ];Rd) satisfying,{
ẏ(t) = f(y(t), t), 0 < t ≤ T,
y(0) = y0,

(1.1)

where ẏ(t) = d
dty(t) and f : Rd × [0, T ] → Rd is Lipschitz continuous. A pos-

teriori error analysis is a computational approach to error estimation that has
been widely employed for finite elements [1,2,4,9,13]. The goal is to produce
accurate estimates. The approach to a posteriori error analysis adopted here
uses variational analysis, adjoint problems, and computable residuals to pro-
duce an error estimate that quantifies the relative contributions of all sources of
discretization error as well as the accumulation, propagation, and cancellation
of their effects.

Prior work [4,5,11,13,15] on a posteriori error estimates for evolution prob-
lems has treated implicit methods, which eases the definition of an adjoint
operator among other things. We are particularly interested in computing es-
timates that quantify the effects on accuracy and stability that result from
using explicit discretization.

The variational analysis is facilitated by adopting a finite element formu-
lation of finite difference methods. Indeed, there are many ways to do this [3,
12,14]. One of the purposes of this manuscript is to construct a finite element
description of popular explicit time integration schemes that allows for a pos-
teriori error estimation. The estimates we derive can be applied directly in a
finite difference code without referring to the finite element description.

The finite element description makes it easy to distinguish two components
of discretization: (1) approximation of the solution space by a finite dimen-
sional piecewise polynomial space and (2) approximations of the differential
operator acting on the spaces. It is important to distinguish these two com-
ponents because, in general, they introduce numerical error in different ways
and their effects accumulate and cancel in different ways. To treat explicit
methods, we introduce special operators in the formulation of the numerical
method, and then quantify the effects of these operators on the numerical
error.

One important issue, however, is the fact that there is not a unique way
to define an adjoint for a nonlinear problem. In particular, the differences
between the stability properties of implicit and explicit scheme suggests that
an a posteriori error analysis of an explicit scheme might require the definition
of a different adjoint problem. Differences in adjoint operators has proved
crucial to the analysis of such discretization “crimes” as operator splitting
[7]. Below, we carry out an analysis using a standard approach to defining
an adjoint based on linearization of the perturbation equation. This adjoint
problem is defined as: Find ϕ ∈ H1([0, T ];Rd) such that,{

〈v,−ϕ̇− Ā∗ϕ〉[0,T ] = 〈v, ψ〉[0,T ], ∀ v ∈ L2([0, T ];Rd),
ϕ(T ) = ψT .

(1.2)
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where

Ā =

∫ 1

0

f ′(sy + (1− s)Y, t)ds.

We also present an analysis that uses adjoints to both the original differential
equation and the numerical discretization.

1.1 Two stage construction of numerical solutions

We divide the construction of the approximation into two stages. In the first
stage, we approximate the solution space by a space of piecewise polynomial
functions using a finite element discretization of the variational formulation of
(1.1). This reads: Find y ∈ H1([0, T ]) such that,{

N (y, v) := 〈ẏ − f(y, t), v〉[0,T ] = 0, ∀ v ∈ L2([0, T ]),

y(0) = y0,
(1.3)

where

〈g, h〉[a,b] =

∫ b

a

(g(t), h(t)) dt,

and (·, ·) denotes the Rd inner product. The finite element approximation
assumes analytic evaluation of all integrals. In the second stage, we introduce
various approximations of the integrands and integrals in (1.3). This amounts
to approximating the differential operator. The approximations are chosen to
produce approximate solutions equivalent to specific finite difference schemes.

2 Approximation of the solution space

We begin by constructing and analyzing the finite element approximation as-
suming all integrals in the variational formulation are evaluated exactly.

2.1 Finite element discretization

The finite element discretization of (1.1) involves computing an approximate
solution in a piecewise polynomial space. To cover a wide spectrum of finite
difference schemes, we consider the so-called continuous and discontinuous
Galerkin methods [5,12]. The finite element methods produce piecewise poly-
nomial approximations on the domain [0, T ] corresponding to a grid,

0 = t0 < t1 < . . . < tN−1 < tN = T,

with time steps kn = tn − tn−1 and subintervals In = [tn−1, tn] . The space of
continuous piecewise polynomials is,

Cq([0, T ]) = {w ∈ C([0, T ]) : w ∈ Pq(In), 1 ≤ n ≤ N},
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where Pq(In) is the space of polynomials of degree ≤ q valued in Rd on In.
The space of discontinuous piecewise polynomials is,

Dq([0, T ]) = {w ∈ L2([0, T ]) : w ∈ Pq(In), 1 ≤ n ≤ N}.

The continuous Galerkin method of order q+ 1, cG(q), is defined interval-
by-interval as: Compute Y ∈ V = Cq([0, T ]) with Y (0) = y0 and for n =
1, . . . , N , {

〈Ẏ − f(Y, t), vk〉In = 0, ∀ vk ∈ Pq−1(In),

Y (t+n−1) = Y (t−n−1).
(2.1)

We can combine these N equations in (2.1) to obtain a global formulation:
Compute Y ∈ Cq([0, T ]) such that,

N∑
n=1

〈Ẏ − f(Y, t), vk〉In = 0, ∀ vk ∈ V ′ = Dq−1([0, T ]),

Y (0) = y0.

The interval-by-interval formulation of the discontinuous Galerkin method
of order q + 1, dG(q), is: Compute Y ∈ V = Dq([0, T ]) such that Y (0−) = y0
and,

〈Ẏ − f(Y, t), vk〉In + ([Y ]n−1, vk(t+n−1)) = 0, ∀ vk ∈ Pq(In), n = 1, . . . , N,
(2.2)

with [Y ]n = Y (t+n )−Y (t−n ). We can interpret the jump condition as imposing
continuity weakly. The global formulation is: Compute Y ∈ V = Dq([0, T ])
such that,

N∑
n=1

(
〈Ẏ − f(Y, t), vk〉In +

(
[Y ]n−1, vk(t+n−1)

))
= 0, ∀ vk ∈ V ′ = Dq([0, T ]),

Y (0−) = y0.

(2.3)
In both of these methods, we are assuming that all integrals are computed

exactly. The discretizations (2.1) and (2.2) yield a (nonlinear) system of equa-
tions for the coefficients of the approximation with respect to the chosen basis
of Pq(In) in each interval. For linear problems, these approximations agree
with some standard finite difference schemes at node values. We say two ap-
proximations are nodally equivalent if they yield the same approximation
values on any given set of nodes {tn} that partition the domain. For linear
constant coefficient problems, the dG(0) scheme is nodally equivalent with
backward Euler, the dG(1) scheme is nodally equivalent with a subdiagonal
Pade scheme, and the cG(1) scheme is nodally equivalent with Crank-Nicolson.
The dG and cG approximations are not nodally equivalent with any commonly
encountered finite difference scheme for nonlinear problems in general.
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2.2 A priori convergence results

A priori analysis [5] of the methods shows that the dG(q) scheme is order q+1
at every point in time while it enjoys a so-called 2q + 1 “superconvergence”
in the approximation value at time nodes tn under certain conditions. The
nominal order of q + 1 is optimal in the finite element sense, which means
that is the accuracy expected in a piecewise polynomial approximation of the
solution. The extra accuracy obtained at time nodes agrees with the expected
accuracy of the nodally equivalent finite difference scheme in the cases there
is such a scheme. Likewise, the cG(q) scheme is order q + 1 globally with
superconvergence 2q in the approximation values at time nodes.

2.3 A posteriori error analysis

Theorem 1 (General Error Representation Formula) If Y (t) is an ap-
proximation of (1.3) obtained via the cG(q) method, then the error in the
quantity of interest defined by ψ and ψT is given by,

〈e, ψ〉[0,T ] + (e(T ), ψT ) =

N∑
n=1

〈R(Y ), ϕ− πkϕ〉In . (2.4)

where ϕ solves the adjoint problem (1.2), πk is a projection onto V ′, and R is
evaluated in the interior of each interval.

If instead, Y (t) is a dG(q) approximation, then

〈e, ψ〉[0,T ] + (e(T ), ψT )

=

N∑
n=1

(
〈R(Y ), ϕ− πkϕ〉In −

(
[Y ]n−1, ϕ(tn−1)− πkϕ(t+n−1)

))
. (2.5)

We provide the proof of this result for reference below.

Proof We prove for the first case, where Y is a discontinuous approximation.
Since e ∈ L2([0, T ];Rd), and can impose e as a legitimate test function in (1.2)
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and use integration by parts and the facts e(0) = 0 and ϕ(T ) = ψT ,

〈e,ψ〉[0,T ] =

N∑
n=1

〈e,−ϕ̇− Ā∗ϕ〉In

= 〈ẏ − f̄(y, t), ϕ〉[0,T ] + (y0, ϕ(0))− (y(T ), ψT )

−
N∑
n=1

(
〈Ẏ − f(Y, t), ϕ〉In + ([Y ]n−1, ϕ(tn−1))

)
− (y0, ϕ(0)) + (Y (T−), ψT )

=

N∑
n=1

(
〈ė− Āe, ϕ〉In − ([Y ]n−1, ϕ(tn−1))

)
− (e(T ), ψT )

=

N∑
n=1

(
〈R(Y ), ϕ〉In − ([Y ]n−1, ϕ(tn−1))

)
− (e(T ), ψT ), (2.6)

Finally, using the Galerkin orthogonality condition in (2.3), we obtain the
error representation formula.

The proof for the continuous Galerkin approximation is almost identical
modulo the fact that continuity removes the jump terms.

2.4 Illustrative example

To illustrate the effects of subsequent stages of discretization, we present re-
sults for a very simple linear problem with a periodic solution. We present
more interesting examples in Section 4.3.

The problem is:

ẏ(t) =

[
0 e.2t

−e.2t 0

]
y(t), t ∈ [0, T ], y(0) =

[
1
0

]
. (2.7)

The quantity of interest is defined by ψ = 0, ψT = 1. In Fig. 2.1, we plot the
error estimate versus final time for the cG(1) method. The adjoint problem is
solved numerically using the higher-order cG(2) method. The resulting error
estimates are very accurate. We see that there is an overall increasing expo-
nential trend in the errors with increasing time, yet there is also substantial
variation in the error as accumulation and cancellation of errors occurs.

3 Approximation of the differential operator using quadrature

Next, we consider finite element methods that involve various approximations
of the differential operator. These approximations are chosen to yield finite
element approximations that are nodally equivalent to specific finite difference
schemes. Showing two methods are nodally equivalent is useful for analysis of
finite difference methods, as this provides a path to derive a posteriori error
estimates using variational analysis and adjoint problems. We also note that
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Fig. 2.1 Upper row: The a posteriori error estimate (2.4) for the cG(1) approximation with
exact quadrature for (2.7) versus final time T . Middle row: Left: Absolute error contribu-
tions versus final time using the cG(1) scheme with first order quadrature; Right: Absolute
error contributions versus final time for the cG(1) method using second and third order
quadratures. Lower row: Left: Absolute error contributions using the Taylor series error rep-
resentation formula for the explicit trapezoid method; Right: Absolute error contributions
using the extrapolation error representation formula for the second-order Adams-Bashforth
method.

the finite element approximation is a function defined for all times, so the
finite element values between nodes might be considered a “natural” way to
define values of a finite difference approximation between nodes.

We begin with quadrature applied to the integrals in the weak formulation,
mainly the integral involving f . There are obvious practical advantages to writ-
ing codes that avoid exact integration of f . Also, specific choices of quadrature
yield formulas that are nodally equivalent to specific finite difference schemes.
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The cG(q) method with quadrature is written as: Find Y ∈ Cq(In) such
that Y (0) = y0 and for n = 1, · · · , N ,

〈Ẏ , vk〉In − 〈f(Y, t), vk〉In,kn = 0, ∀ vk ∈ Pq−1(In), (3.1)

where the nonlinear term uses the approximate inner product

〈g, h〉In,kn =

Ln∑
i=1

g(si,n)h(si,n)wi,n,

defined by nodes si,n and weights wi,n associated with In. A similar change is
made to the discontinuous Galerkin method to implement quadrature.

As a simple example, we consider the cG(1) method with the trapezoid
rule quadrature, defined by using

〈g, h〉In,kn =
kn
2

(g(tn−1)h(tn−1) + g(tn)h(tn)).

in (3.1) to obtain,

Y (tn) = Y (tn−1) +
kn
2

(f(Y (tn−1), tn−1) + f(Y (tn), tn)).

So, the cG(1) method with trapezoid rule quadrature is nodally equivalent to
the implicit trapezoid method. Similarly, the cG(1) method with the midpoint
rule quadrature is nodally equivalent to the implicit midpoint method.

3.1 A priori convergence results

Following standard finite element convergence analysis, using a quadrature for-
mula of sufficient accuracy preserves the nominal optimal order of convergence
of the method. Superconvergence results are more difficult to show. Perhaps
the easiest approach is to find a nodally equivalent finite difference scheme
and use the corresponding convergence results.

3.2 A posteriori error analysis

We note that the quadrature approximation (3.1) has the property that the
approximation error can be made as small as desired, e.g. by increasing the
order or number of internal nodes in a composite rule. This suggests the stan-
dard approaching of using the previous adjoint problem (1.2) for a posteriori
error estimation. This yields,
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Theorem 2 (Quadrature Error Representation Formula) If Y (t) is an
approximation of (1.3) obtained via the cG(q) method with a quadrature de-
fined by the inner product 〈·, ·〉In,kn , then,

〈e, ψ〉[0,T ] + (e(T ), ψT ) =

N∑
n=1

(
〈R(Y ), ϕ− πkϕ〉In︸ ︷︷ ︸

Discretization Contribution

(3.2)

+ 〈f(Y, t), πkϕ〉In − 〈f(Y, t), πkϕ〉In,kn︸ ︷︷ ︸
Quadrature Contribution

)
.

where ϕ and πk are defined as above.
If instead, Y (t) is a dG(q) approximation, then,

〈e, ψ〉[0,T ] + (e(T ), ψT )

=

N∑
n=1

(
〈R(Y ), ϕ− πkϕ〉In − ([Y ]n−1, ϕ(tn−1)− πkϕ(t+n−1))︸ ︷︷ ︸

Discretization Contribution

+ 〈f(Y, t), πkϕ〉In − 〈f(Y, t), πkϕ〉In,kn︸ ︷︷ ︸
Quadrature Contribution

)
,

Proof As before we prove the first case where Z(t) is a discontinuous Galerkin
approximation. The proof is identical up to the point that Galerkin orthogo-
nality is used, therefore using (2.6) we have,

〈e, ψ〉[0,T ] + (e(T ), ψT ) =

N∑
n=1

(
〈R, ϕ〉In −

(
[Y ]n−1, ϕ(tn−1)

))
.

We next add zero in two ways, firstly by using Galerkin orthogonality, and
secondly by adding and subtracting a term,

〈e, ψ〉[0,T ] + (e(T ), ψT ) =

N∑
n=1

(
〈f(Y, t)− Ẏ , ϕ〉In − ([Y ]n−1, ϕ(tn−1))

+ 〈Ẏ , πkϕ〉In − 〈f(Y, t), πkϕ〉In,kn

+ ([Y ]n−1, πkϕ(t+n−1))± 〈f(Y, t), πkϕ〉In
)
.

By rearranging the terms we obtain the error representation formula for an
approximation with quadrature.

As before, it is a simple matter to prove the error representation formula
for the continuous Galerkin approximation, as it is a simplification.

In these estimates, we have distinguished contributions from discretization
of the solution space from the effects of quadrature, which approximates the
differential operator. This is important for two reasons. First, we see that the
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discretization contribution involves Galerkin orthogonality, leading to an ad-
joint weight of ϕ − πkϕ, while the quadrature term only involves πkϕ. The
consequence is that these two sources of discretization error accumulate, prop-
agate, and cancel in different ways in general. The second important issue
is that we can identify situations in which the discretization of the solution
space is a more or less significant contribution to the total error as compared
to the approximation of the differential operator. In the former case, the solu-
tion is to choose smaller time steps or use a higher order piecewise polynomial
space. In the latter case, we can decrease the error by decreasing the time step.
But we can also simply use a higher order quadrature, which is generally a
more efficient approach. We illustrate this dichotomy in the examples below.
We also note that in the case that a reasonable quadrature formula is used,
the discretization contributions of the finite element approximations with and
without quadrature are close.

3.3 Illustrative example

Returning to (2.7), we solve with quadratures of three different orders applied
to cG(1) to show the effect of the quadrature on the error. To explore relative
differences, Fig. 2.1 shows the contributions to the error defined from (3.2) as,

∣∣∣∣ N∑
n=1

〈R, ϕ− πkϕ〉In
∣∣∣∣︸ ︷︷ ︸

Discretization Contribution

+

∣∣∣∣ N∑
n=1

(
〈f(Y, t), πkϕ〉In − 〈f(Y, t), πkϕ〉In,kn

)∣∣∣∣︸ ︷︷ ︸
Quadrature Contribution

We note that there may be significant cancellation between the “discretization”
and “quadrature” contributions in the estimate, so the absolute values of these
quantities are examined only to consider their relative size. In this case, we
find that the discretization contributions are roughly the same regardless of the
quadrature. However, the first order quadrature contribution dominates the
discretization, while for third order quadrature, the discretization contribution
dominates. The error contributions are roughly the same when second order
quadrature is used. This suggests the standard rule of thumb for finite element
quadratures, which is to use a quadrature order that is the same as the finite
element method.

However when the quadrature error contribution is large, then using a
higher order quadrature to evaluate the integrals is generally less computation-
ally expensive than increasing the order of approximation or using a smaller
time step for the finite element discretization. Hence in some circumstances,
using a higher order quadrature formula is an efficient way to increase accu-
racy.
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4 Explicit Approximations

We next consider explicit discretizations, i.e., methods that do not require
solution of a (non)linear system of equations for the approximation on each
time step. We are particularly interested in the most common explicit finite
difference methods, e.g., forward Euler, Explicit Trapezoid, Runge-Kutta 4,
and the family of Adams-Bashforth methods.

In the finite element framework, explicit discretizations result from using
extrapolation of some approximation of f in the variational integrals. There
are many possible ways to produce an extrapolating approximation. However,
we discuss two approaches that provide a natural avenue for a posteriori error
analysis.

The first approach uses a local series expansion, and this yields a family
of one-step explicit methods such as Runge-Kutta. Often these expansions
are approximations of a truncated Taylor series, though they can be more
general. Equivalence with explicit methods can be obtained by applying the
finite element discretizations including quadrature, e.g. (3.1), to the nominal
modified problem of the form: Find ỹ ∈ H1([0, T ];Rd) such that,

N∑
n=1

〈 ˙̃y −
L∑
i=1

αif(P inỹ, t), v〉In , ∀ v ∈ L2([0, T ];Rd),

ỹ(0) = y0,

(4.1)

where
∑L
i=1 αi = 1 and the operators P in are described below.

The second approach replaces f by an extrapolation of a polynomial in-
terpolant computed from previous time nodes. This approach yields a fam-
ily of methods that include the multi-step explicit methods such as Adams-
Bashforth. The nominal modified equation for this type of approximation is:
Find ỹ ∈ H1([0, T ];Rd) such that,
`−1∑
n=1

〈 ˙̃y − f(ỹ, t), v〉In +

N∑
n=`

〈 ˙̃y −Q`nf(ỹ, t), v〉In = 0, ∀ v ∈ L2([0, T ];Rd),

ỹ(0) = y0,

(4.2)

where the operators Q`n are described below.

4.1 Taylor Series approximation

As discussed, this approach uses an approximate truncated Taylor Series ex-
pansion around each time node. We first discuss the construction of the ap-
proximation, then use the approximation to define a solution method. We
express the approximation as the result of an operator P applied to piecewise
polynomials. The operator P is the composition of two operators P = TS.



12 Collins, Estep, Tavener

Around a given node tn−1, the operator P maps a BV function to a polyno-
mial defined on [tn−2, tn]. The first operator S projects a function with limited
regularity into a space of functions with sufficient regularity for a truncated
Taylor series to be defined. This is needed since we apply P to finite element
functions that have discontinuities in value and/or derivative at time nodes.
Given n and v ∈ BV on an interval containing time nodes {ti, i ∈ In}, we
define S as the polynomial that interpolates v with values {v(t−i ), i ∈ In}.
Typically, In includes n, n − 1, n − 2, . . . for the number of nodes equal to
the order of the Taylor series expansion. Therefore S performs a spline-type
interpolation on the left-hand side of the nodes.

The second operator T maps a sufficiently smooth function to a polynomial
of degree k valued on [tn−2, tn] that is, roughly speaking, an approximation of
a Taylor polynomial of order k at tn−1. Given a function v ∈ Ck([tn−2, tn];Rd),
we define

Tv = v(tn−1) +

k∑
i=1

d(i−1)

dt(i−1)
f(v(tn−1), tn−1)

(t− tn−1)i

i!
,

where the time derivatives of f are computed using the chain rule. This ex-
pression is motivated by considering v to be an approximation of the solution
y of (1.1), for which

dy

dt
= f(y),

d2y

dt2
=

d

dt
f(y) =

df

dy

dy

dt
,

d3y

dt3
=

d2

dt2
f(y), · · ·

Since P = TS is defined in a neighborhood of each tn−1 and used in
[tn−1, tn], it is convenient to denote its restriction to [tn−1, tn] by Pn. We then
write the first explicit cG(q) method as: Find Y ∈ Cq(In) such that,{

〈Ẏ , vk〉In = 〈f(PnY, t), vk〉In,kn , ∀ vk ∈ Pq−1(In), n = 1, . . . , N,

Y (0) = y0.

(4.3)

Note that we have once again used quadrature to evaluate the nonlinear term.
The definition of the dG(q) method is analogous.

We note that these cG and dG approximations can be obtained by apply-
ing the finite element discretizations including quadrature, e.g. (3.1), to the
nominal modified problem (4.1). Introduction of (4.1) also turns out to be
convenient for error analysis.

4.1.1 Examples

As a simple example, we consider the Taylor series of order zero, so

PnY (t) = Y (t−n−1),
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The weak form of the modified problem (4.1) becomes

N∑
n=1

〈Ẏ − f(Y (t−n−1), t−n−1), v〉In = 0, ∀ v ∈ L2(Ω).

Using dG(0) with the left hand quadrature rule, we obtain

Y (t−n ) = Y (t−n−1) + knf(Y (t−n−1), t−n−1),

which is the update formula for the forward Euler method.
In the next examples, we consider the Taylor series of order one,

PnY = Y (t−n−1) + f(Y (t−n−1), t−n−1)(t− t−n−1).

The cG(1) approximation is determined by,

Y (tn) = Y (tn−1) + 〈f(Y (tn−1) + f(Y (tn−1), t−n−1)(t− t−n−1), 1〉In,kn .

By varying the quadrature, we can obtain different nodally equivalent finite
difference schemes. For example, the midpoint quadrature rule yields the ex-
plicit midpoint method,

Ŷn = Y (tn−1) +
kn
2
f(Y (tn−1), t−n−1)

Y (tn) = Y (tn−1) + knf(Ŷn, tn−1/2),

with tn−1/2 = tn − kn
2 . If we use the trapezoid rule for quadrature, we obtain

the explicit trapezoid or RK2 method,

Ŷn = Y (tn−1) + knf(Y (tn−1), t−n−1)

Y (tn) = Y (tn−1) +
kn
2

(f(Y (tn−1), t−n−1) + f(Ŷn, t
−
n )).

We can derive new methods for a given Pn by changing the quadrature.
This can increase accuracy on certain problems considerably at a mild increase
in computational cost. For instance, if we replace the trapezoid rule in the RK2
method with Simpson’s rule,

〈g, h〉In,kn =
kn
6

(g(tn−1)h(tn−1) + 4g(tn−1/2)h(tn−1/2) + g(tn)h(tn)),

this gives a method we call RK2/4,

Y1 = Y (tn−1), Y2 = Y1 +
kn
2
f(Y1, tn−1), Y3 = Y1 + knf(Y1, tn−1)

Y (tn) = Y (tn−1) +
kn
6

(f(Y1, tn−1) + 4f(Y2, tn−1/2) + f(Y3, tn)).

Note that while we use a fourth order quadrature in RK2/4 with the cost
of a single additional function evaluation, the method is still second order
overall. However, this can still lead to significant improvement in accuracy
when the quadrature contribution in the RK2 approximation is dominant, as
we illustrate below.
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4.1.2 Runge-Kutta 4

The fourth order Runge-Kutta method (RK4) for solving ODEs is well used
as a catch-all method. It has fairly high order with relatively few function
evaluations, making it a method worth trying before moving on to more com-
plex methods. Therefore, we show how such a method can be written as a
nodally equivalent finite element method, so that the above error analysis can
be implemented.

As with RK2, RK4 is a one-step method. The update formula is given as,

Y 1 = Y (tn−1), Y 2 = Y 1 +
kn
2
f(Y 1, tn−1)

Y 3 = Y 1 +
kn
2
f(Y 2, tn−1/2), Y 4 = Y 1 + knf(Y 3, tn−1/2)

Y (tn) = Y (tn−1) +
kn
6

(
f(Y 1, tn−1) + 2f(Y 2, tn−1/2)

+ 2f(Y 3, tn−1/2) + f(Y 4, tn)
)

Four separate mappings are needed to show equivalence for RK4 with co-
efficient,

α1 =
1

6
α2 =

2

6
α3 =

2

6
α4 =

1

6
.

Each mapping corresponds to an intermediate value Y i, and they have the
property,

(P 1
nY )(tn−1) = Y (tn−1) =: Y 1

(P 2
nY )(tn−1/2) = Y (tn−1) +

kn
2
f(Y (tn−1), tn−1) =: Y 2

(P 3
nY )(tn−1/2) = Y (tn−1) +

kn
2
f(Y 2, tn−1/2) =: Y 3

(P 4
nY )(tn) = Y (tn−1) + knf(Y 3, tn−1/2) =: Y 4

We state the definitions of the mappings P in and show that when applied
to the exact solution y(t), they can be written as approximations of the full
Taylor series,

y = P̃ny =

∞∑
i=0

1

i!
y(i)(tn−1)(t− tn−1)i.

We look at each mapping individually.
The first mapping is defined as,

P 1
ny = y(tn−1)

and is a simple truncation of the full Taylor series P̃ny. Defining the second
mapping as,

P 2
ny = y(tn−1) + f(y(tn−1), tn−1)(t− tn−1),

we see that is too is a truncated Taylor series, since y′(tn−1) = f(y(tn−1), tn−1).
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The third and fourth mapping cannot be written simply as a truncated
Taylor series. However, they can be written as a series of approximations to
the Taylor series. We use the fact that y(t) = P̃ny and P 2

ny ≈ P̃ny. We also
introduce the projection P̂ny = y(tn−1/2). Starting with P̃ny, we use certain
approximations to obtain the definition of P 3

n and P 4
n .

P̃ny = y(tn−1) +

∫ t

tn−1

f(y(s), s) ds

≈ y(tn−1) + P̂nf(y, t)(t− tn−1)

= y(tn−1) + P̂nf(P̃ny, t)(t− tn−1)

≈ y(tn−1) + P̂nf(P 2
ny, t)(t− tn−1).

Therefore we define the third mapping as,

P 3
ny = y(tn−1) + P̂nf(P 2

ny, t)(t− tn−1).

Through a very similar derivation we obtain the fourth mapping,

P 4
ny = y(tn−1) + P̂nf(P 3

ny, t)(t− tn−1).

The difference in the derivation being that we use the approximation P 3
ny ≈

P̃ny.
Finally we must apply certain quadratures to obtain equivalence with RK4.

We define the following discrete inner products to represent various quadrature
rules.

〈g, h〉In,L = Left Hand Rule

〈g, h〉In,M = Midpoint Rule

〈g, h〉In,R = Right Hand Rule

Using these mapping and quadratures, the following finite element method is
equivalent to RK4: Find Y ∈ Cq(In) such that,
〈Ẏ , vk〉In = 1

6

[
〈f(P 1

nY, t), vk〉In,L + 2〈f(P 2
nY, t) + f(P 3

nY, t), vk〉In,M
+〈f(P 4

nY, t), vk〉In,R
]

∀ vk ∈ Pq−1(In), n = 1, . . . , N

Y (0) = y0.

(4.4)

Finally, we solve (4.4) with cG(3) finite elements as this will yield the
expected order of superconvergence which matches the order of accuracy of
the finite difference scheme. Nodal equivalence is easily proved, as the piece-
wise constant function is a test function for cG(3). The additional degrees of
freedom give intermediate values of the finite element solution within In that
are needed for the finite difference scheme. These intermediate values can be
determined explicitly from the values of the approximation at tn−1 and tn.

Finally we note that while the finite difference scheme is fourth order,
the approximations to the Taylor series and the quadrature used in the finite
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element formulation are less than fourth order. This suggests that the RK4
scheme achieves its order through a special cancelation of error contributions.
This has an impact on the a posteriori error estimate, because each individual
contribution to the overall error are not in themselves fourth order, yet their
sum yields fourth order accuracy. In particular, this presents a difficulty for
adaptivity, as the effect of cancelation cannot be easily accounted for. It is
possible to create a method that is fourth order in each term, by using a
mapping that is the fourth order Taylor series,

PnY = Y (tn−1) +

3∑
i=1

1

i!
f (i)(Y (tn−1), tn−1)(t− tn−1)i,

and a fourth order quadrature such as Simpson’s rule. This would make each
term fourth order.

4.1.3 A posteriori error analysis

We note that the truncated Taylor series approximation has the property that
the approximations become exact in the limit of increasing order. Hence, the
sequence of “explicit” modified problems (4.1) nominally approach the true
problem in the limit of increasing order. With intuition analogous to the use
of quadrature, this suggests using the same adjoint problem for error analysis.
The effect of introducing the operator Pn is a modification of the residuals.

Theorem 3 (Taylor Series Error Representation Formula) If Y (t) is
an approximation of (4.1) obtained via the cG(q) method with quadrature,
then,

〈e, ψ〉[0,T ]+(e(T ), ψT ) =

N∑
n=1

(
〈RP (Y ), ϕ− πkϕ〉In︸ ︷︷ ︸

Discretization Contribution

+ 〈f(Y, t)−
L∑
i=1

αif(P inY, t), ϕ〉In︸ ︷︷ ︸
Explicit Contribution

+

L∑
i=1

αi〈f(P inY, t), πkϕ〉In −
L∑
i=1

αi〈f(P inY, t), πkϕ〉In,kin︸ ︷︷ ︸
Quadrature Contribution

)
,

where ϕ and πk are defined as above, and RP (Z) =
∑L
i=1 αif(P iZ, t) − Ż is

the modified residual.
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If instead, Y (t) is a dG(q) approximation, then,

〈e, ψ〉[0,T ] + (e(T ), ψT )

=

N∑
n=1

(
〈RP (Y ), ϕ− πkϕ〉In − ([Y ]n−1, ϕ(tn−1)− πkϕ(t+n−1))︸ ︷︷ ︸

Discretization Contribution

+ 〈f(Y, t)−
L∑
i=1

αif(P inY, t), ϕ〉In︸ ︷︷ ︸
Explicit Contribution

+

L∑
i=1

αi〈f(P inY, t), πkϕ〉In −
L∑
i=1

αi〈f(P inY, t), πkϕ〉In,kin︸ ︷︷ ︸
Quadrature Contribution

)
,

Proof As before, we begin by defining the following nonlinear form,

NP (Z, v) =

N∑
n=1

〈Ż −
L∑
i=1

αif(P inZ, t), v〉In , (4.5)

for Z ∈ H1([0, T ];Rd) and v ∈ L2([0, T ];Rd). We evaluate (1.3) and (4.5) at y
and Y respectively and subtract to obtain,

N∑
n=1

〈RP (Y ), v〉In = N (y, v)−NP (Y, v)

=

∫ 1

0

N ′(sy + (1− s)Y, v; e) ds+N (Y, v)−NP (Y, v).

This yields a relation between the error and the residual,

N∑
n=1

〈RP (Y ), v〉In =

N∑
n=1

(
〈ė− Āe, v〉In − 〈f(Y, t)−

L∑
i=1

αif(PnY, t), v〉In
)
.

Following the previous proofs, we use (2.6) and obtain,

〈e, ψ〉[0,T ] + (e(T ), ψT ) =

N∑
n=1

(
〈ė− Āe, ϕ〉In −

(
[Y ]n−1, ϕ(tn−1)

))

=

N∑
n=1

(
〈RP (Y ), ϕ〉In − ([Y ]n−1, ϕ(tn−1)

)
+ 〈f(Y, t)−

L∑
i=1

αif(PnY, t), ϕ〉In
)
.

Next we use Galerkin orthogonality defined in (4.3) to obtain the error repre-
sentation formula. As before, proving the representation formula for a contin-
uous Galerkin approximation follows a similar argument.
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4.1.4 Illustrative example

Returning to (2.7), we have three error contributions; discretization, quadra-
ture, and a new “explicit” contribution. In Fig. 2.1, we plot these contributions
for the explicit trapezoid method. We see that the explicit contribution is larger
than the discretization error while the quadrature contribution is significantly
smaller overall. However, the quadrature contribution is “out of phase” with
the other two contributions.

4.2 Polynomial extrapolation

Once again, this approximation involves insertion of an operator. The operator
Q`n : BV ([0, T ]) → P`−1(In) produces a polynomial Q`nf that interpolates a
given function f at the nodes tn−`, . . . , tn−1. Subsequently,Q`nf is extrapolated
to replace f on In. For notational purposes we define the operator Q` to be
such that Q`|In = Q`n. Properly speaking, Q`n is defined only for [t`−1, T ].
In the initial stage [0, t`−1], we have to use another process to define the
approximation. It is important to use a method that preserves the order of
the general method. There are various options, including use of Taylor series
approximation or a nested sequence of nodal approximations that build up
the appropriate order. The a posteriori error analysis has to be modified to
account for the two different discretization stages. To simplify the presentation,
we solve the initial stage with the implicit cG(` − 1) method, which has the
same order as the corresponding explicit method.

The cG(q) method with polynomial extrapolation is given by: Find Y ∈
Cq(Ω) such that,

〈Ẏ , vk〉In − 〈f(Y, t), vk〉In = 0 ∀ vk ∈ Pq−1(In), n = 1, . . . , `− 1,

〈Ẏ , vk〉In − 〈Q`nf(Y, t), vk〉In = 0 ∀ vk ∈ Pq−1(In), n = `, . . . , N,

Y (0) = y0.

(4.6)

No quadrature is used since Q`n is a polynomial and the integrands can be
integrated analytically. As above, we can view (4.6) as applying the cG(q)
method to the modified problem (4.2).

4.2.1 Examples

The finite element approximations are nodally equivalent to the Adams-Bashforth
multi-step finite difference methods. To see this, we apply the cG(1) finite el-
ement method to the modified problem (4.2) with ` = 2. This yields,

Y (tn) = Y (tn−1) +

〈
f(Y (tn−1), tn−1)

t− tn−2
kn

+ f(Y (tn−2), tn−2)
tn−1 − t
kn

, 1

〉
In

= Y (tn−1) +
3

2
knf(Y (tn−1), tn−1)− 1

2
knf(Y (tn−2), tn−2),
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which is the update formula for the second order Adams-Bashforth method.
For a general projection Q`n the finite element approximation of (4.2) is nodally
equivalent to the `th order Adams-Bashforth method.

4.2.2 A posteriori error analysis

We again use the adjoint problem (1.2). However, this choice is potentially
more problematic than for the previous methods. First, there is a finite limit
to the accuracy of a family of polynomial interpolants of increasing order
computed on a fixed sequence of time nodes because of stability limitations of
polynomial interpolation. Thus, unlike the Taylor series approach, the poly-
nomial extrapolation approximation does not produce a family of modified
problems (4.2) that converge to the true problem. Moreover, we are extrap-
olating rather than interpolating the polynomial. Hence, there is reasonable
concern that the discretized solution operator is associated with a different
adjoint operator than the true solution operator. We explore this below in
Section 5.

Theorem 4 (Extrapolation Error Representation Formula) If Y (t) is
an approximation of (4.2) obtained via the cG(q) method, then,

〈e, ψ〉[0,T ]+(e(T ), ψT )

=

`−1∑
n=1

(
〈R(Y ), ϕ− πkϕ〉In︸ ︷︷ ︸

Initial Contribution

+

N∑
n=`

〈R`Q(Y ), ϕ− πkϕ〉In︸ ︷︷ ︸
Discretization Contribution

+ 〈f(Y, t)−Q`nf(Y, t), ϕ〉In︸ ︷︷ ︸
Explicit Contribution

)

where ϕ and πk are defined as above, and R`Q(Z) = Q`f(Z, t) − Ż is the
modified residual.

If instead, Y (t) is a dG(q) approximation, then,

〈e, ψ〉[0,T ] + (e(T ), ψT ) =

`−1∑
n=1

〈R(Y ), ϕ− πkϕ〉In︸ ︷︷ ︸
Initial Contribution

+

N∑
n=`

(
〈R`Q(Y ), ϕ− πkϕ〉In − ([Y ]n−1, ϕ(tn−1)− πkϕ(t+n−1))︸ ︷︷ ︸

Discretization Contribution

+ 〈f(Y, t)−Q`nf(Y, t), ϕ〉In︸ ︷︷ ︸
Explicit Contribution

)
,

Note that the initial contribution is the same as provided by Theorem 1.
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Proof The proof follows the argument used for Theorem 3 except for the treat-
ment of the initial stage. There are at least two ways to incorporate the error in
the initial stage into the error representation formula. In the results above, we
divide the time step contributions into those from the initial stage and those
from the remaining stage. We then apply the appropriate form of Galerkin
orthogonality to each piece independently.

Another approach involves applying Theorem 4 on the second stage [t`−1, T ]
using t`−1 as an “initial” time. The error representation formula for a cG(q)
solution is given by,

〈e, ψ〉[t`−1,T ] + (e(T ), ψT ) =

N∑
n=`

(
〈R`Q(Y ), ϕ− πkϕ〉In

+ 〈f(Y, t)−Q`nf(Y, t)〉In
)

+ (e(t`−1), ϕ(t`−1)),

where the last term (e(t`−1), ϕ(t`−1)) represents “inherited” error from the
initial stage. We then define the appropriate adjoint problem for the method
on the initial stage using data ϕ(t`−1) to define the correct quantity of interest.

4.2.3 Illustrative example

Returning to (2.7), we show two error contributions, i.e., the discretization and
“explicit” contributions in Fig. 2.1. As before, the discretization contribution
is almost identical to the discretization contributions for previous methods.
The explicit error contribution clearly dominates.

4.3 Numerical experiments

We explore various aspects of the a posteriori error estimates using several
examples chosen to stress particular characteristics. We are particularly fo-
cussed on the relative sizes of error contributions and the overall accuracy of
the estimates. To measure the latter, we consider the effectivity ratio defined
by,

E =
Estimated Error

Exact Error

and the “error” or divergence from 1, |1− E|. In some cases, we construct the
problem to have a known solution so the error is computable. In other cases,
we solve the problem using a higher order method with very fine time steps
to get a much more accurate approximation we use to approximate the true
error.

In the following examples, we consider the explicit trapezoid (RK2), RK4/2,
and second order Adams-Bashforth (AB2) methods. All of these methods are
second order and the approximate solutions are obtained by solving the corre-
sponding modified equation with cG(1). We solve the adjoint problems using
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the third order cG(2) method. When we wish comparison with the modified
equation, we solve that problem using the fully implicit cG(1) method.

4.3.1 The Lorenz equation

The first example is the Lorenz system,
ẏ1 = −σy1 + σy2

ẏ2 = ry1 − y2 − y1y3
ẏ3 = −by3 + y1y2

y(0) = [−9.408,−9.096, 28.581]T ,

(4.7)

where we choose common values σ = 10.1, r = 28.0 and b = 8/3. This is a
well-known chaotic system [10,18]. In [18], the properties of the a posteriori
error estimate for the implicit dG and cG methods is explored. The conclusion
is that the estimates are accurate up to a critical time, at which point the error
in the solution gets large and linearization error leads to inaccurate estimates.

In the following examples, we use a uniform time step of kn = 1e− 2 and
set ψ = 0, ψT = 1 for a sequence of final times T between 1 and 20. To ap-
proximate the true error, we solve the problem with a high order finite element
method and very fine time step. Fig. 4.1 shows the error in the effectivity ratio
for the cG(1), RK2, and AB2 methods. We see that there is little qualitative
difference between the three methods. The estimates for the explicit methods
are less accurate than for the implicit method. We note that the error in the
explicit methods grows more rapidly, which means the linearization error in
the definition of the adjoint increases more quickly as well. On the other hand,
the difference in the effectivity ratios is not significant, and estimate for the
explicit methods is reasonably accurate.

In Fig. 4.1, we also plot the absolute error contributions for the RK2 and
AB2 methods. In both cases, the explicit contribution dominates, and it dom-
inates more in the extrapolation method. This is common to most examples
we tested. We also see that the quadrature error is negligible. This is because
the Lorenz system is almost linear, containing only two bilinear terms.

4.3.2 A highly nonlinear example

The next example is{
ẏ = y(1 + tanh(α(y − .3)))− te−t

(
−2 + 2 t+ t tanh

(
α
(
t2e−t − .3

)))
,

y(0) = 0,

(4.8)

where the forcing term is constructed to give the exact solution y(t) = t2e−t.
The hyperbolic tangent, with α = 100, in the nonlinearity leads to a sudden
change in value as the solution changes, providing a challenge for extrapolation
methods. We again compare the cG(1), RK2, and AB2 methods. We set ψ =
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Fig. 4.1 Results for the Lorenz problem (4.7). Left: Error in the effectivity ratio for the
cG(1), RK2 and AB2 methods. Middle: Error contributions for RK2. Right: Error contri-
butions for AB2.

0, ψT = 1 for a sequence of final times T . The modified equations in the explicit
methods are solved with a uniform time step of kn = 1e− 3.

Fig. 4.2 shows solutions and the error in the effectivity ratio for all three
methods. Around t = 4, there is a large jump in the error of the effectivity
for the explicit methods corresponding to a sudden loss of accuracy. We also
plot the error contributions for the RK2 and AB2 methods. For the RK2
method, the quadrature error dominates all contributions while the explicit
contribution dominates the discretization contribution. For AB2, the explicit
contribution is dominant.

4.3.3 The two body problem

We next consider the well known two body problem
ẏ1 = y3, ẏ3 =

−y1
(y21 + y22)3/2

,

ẏ2 = y4, ẏ4 =
−y2

(y21 + y22)3/2

y(0) = [0.4, 0, 0, 2.0]>.

The two body problem is a Hamiltonian system with a complicated dynamic
structure that can be exploited in numerical methods. However, we use it here
to investigate the accuracy of standard integration methods. For the specified
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Fig. 4.2 Results for the nonlinear problem (4.8). Upper left: Exact and approximate so-
lutions, note that explicit methods becomes highly inaccurate around T = 4. Upper right:
Error in the effectivity ratios. Lower left: Error contributions for RK2. Lower right: Error
contributions for AB2.

choice of initial value, there is an exact analytic periodic solution determined
by the equation,

y =

[
cos(τ)− .6, .8 sin(τ),

− sin(τ)

1− .6 cos(τ)
,

.8 cos(τ)

1− .6 cos(τ)

]>
,

where τ solves .6 cos(τ) = 1.

Fig. 4.3 show the error in the effectivity ratios for the cG(1), RK2, and
AB2 methods. We see that the error estimate becomes quite inaccurate around
specific times during the first part of the solution and the inaccuracy gradually
increases as time passes.

Next, we examine the absolute error contributions from each time interval
during one computation. For this we use the quantity of interest defined by
ψ ≡ 1 and ψT = 0, which gives the error in a weighted average over [0, T ]. We
solve up to time T = 12.55 using a uniform time step of kn = .01. In Fig. 4.3,
we plot the error contributions for RK2. We note that the quadrature contri-
bution dominates during periods of the solution, so we also present results for
the RK2/4 method. As expected, the discretization and explicit contributions
significantly dominate the quadrature contribution in RK2/4 because we are
computing integrals in the variational formulation more accurately.

Since the quadrature error only dominates over part of the domain, while
the RK2/4 method costs more per time step than RK2, this suggest use of an
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Fig. 4.3 Results for the two body problem. Upper left: Error in the effectivity ratio for
cG(1), RK2, and AB2. Upper right: Absolute error contributions from each time inter-
val for RK2. Lower left: Absolute error contributions from each time interval for RK2/4.
Lower right: Absolute error contributions from each time interval for the adaptive trapezoid
method.

adaptive quadrature approach in which the higher order quadrature is only
used when the quadrature contribution is dominant. The algorithm is:

IF(ABS(Quadrature) < MAX(ABS(Discretization),ABS(Explicit))) THEN

Solve with RK2

ELSE

Solve with RK2/4

END

We present the results for this adaptive algorithm and see the quadrature error
has been reduced so that it no longer dominates.

In Table 4.1, we give errors for various quantities of interest for RK2,
RK2/4, the adaptive quadrature method, and RK2 with the time step cut in
half. We see that the adaptive scheme obtains comparable accuracy to the
RK2/4 scheme. Also, for the average error over the whole domain and the
error at the final time, the error for the adaptive scheme is better than the
error obtained by halving the time step which has more computational cost.
However, if we consider the error in the second component as the quantity of
interest, the adaptive scheme and RK2/4 do not improve the accuracy, while
of course halving the time step does. This suggests that for certain quantities
of interest, an adaptive quadrature scheme can give improved accuracy for less
cost than halving the time step.
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ψ = 1, ψT = 0 ψ = 0, ψT = 1 ψ = (0100)>, ψT = 0
RK2 1.34e-1 -1.06e-1 -3.16e-2
RK2/4 -1.19e-2 -1.49e-2 -2.95e-2
Adaptive Quad. -1.08e-2 (37.5%) -1.58e-2 (45.3%) -3.60e-2 (28.9%)

RK2 with kn
2 3.11e-2 -3.04e-2 -7.68e-3

Table 4.1 Errors in various quantities of interest for the explicit trapezoid method and it’s
variations.

Fig. 4.4 Exact solution of the Bistable problem with given initial data. One well collapses
at t ≈ 41 while the other collapses at t ≈ 141.

4.3.4 The Bistable problem

We next consider solution of a large dimension system obtained by a method
of lines discretization in space of the well known bistable, or Allen-Cahn,
parabolic problem,

ut = u− u3 + ε uxx, 0 < x < 1, 0 < t,
∂u
∂x (0, t) = ∂u

∂x (1, t) = 0, 0 < t,

u(x, 0) = u0(x), 0 < x < 1.

For small ε, the solution of this problem exhibits “metastability”, that is long
periods of quasi-steady state behavior punctuated by rapid transients [11]. We
consider initial data that gives two metastable periods over [0, 150],

u0(x) =


tanh((.2− x)/(2

√
ε)), 0 ≤ x < .28,

tanh((x− .36)/(2
√
ε)) .28 ≤ x < .4865,

tanh((.613− x)/(2
√
ε)) .4865 ≤ x < .7065,

tanh((x− .8)/(2
√
ε)) .7065 ≤ x < 1,

We show the numerical solution with ε = .0009 in Fig. 4.4. The solution begins
with two “wells” and at t ≈ 41 and t ≈ 141, the wells sharply collapse.
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Fig. 4.5 Results for the discretized Bistable problem. Upper left: Absolute error contribu-
tions from each time interval for RK2. Upper right: Absolute error contributions from each
time interval for AB2. Lower left: Absolute error contributions from each time interval for
RK4. Lower right: Absolute error contributions from each time interval for AB4.

We discretize the spatial variable with a standard cG(1) finite element
method using a uniform mesh size of h = 0.02 to obtain,

{
u̇ = u− u3 +

ε

h2
Au, 0 < t,

u(0) = u0(x),
, A =


−2 2
1 −2 1

. . .
. . .

. . .

1 −2 1
2 −2

 ,

where x is the discretized spatial variable. We present results for the RK2 and
AB2 methods as well as the well known fourth order Runge-Kutta method
(RK4) and fourth order Adams-Bashforth method (AB4), all using the uniform
time step of kn = .01. For the latter two, we solve the respective modified
equations with the cG(3) finite element method and the adjoint problems
with the cG(4) method. For a quantity of interest, we consider the average
of the error over both the temporal and spatial domain. We solve up to time
T = 150 in order to include both collapses of the wells.

We plot the absolute error contributions from each time interval for one
solution for all four methods in Fig. 4.5. We see two sharp jumps in the er-
ror contributions arising from rapid transitions of the solution. It is also in-
teresting to observe the difference between the explicit contribution and the
discretization contribution. For RK2 they are fairly close, while for AB2 the
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contributions are about twice as far apart. This makes sense as the extrap-
olation approximation is less accurate than the Taylor series approximation.
In the higher order methods, we see that the explicit contribution is signifi-
cantly larger than the discretization contribution. This suggest that explicit
contribution is more significant for higher order methods.

5 Another a posteriori error estimate

In the a posteriori results presented above, we use the same adjoint problem
that is typically employed for analysis of the original fully implicit dG and
cG finite element methods. This choice has proved reasonable for dealing with
quadrature approximations, but whether or not this is reasonable for the Tay-
lor series and polynomial extrapolation variations is less clear. In this section,
we present a different approach to a posteriori analysis that uses both an ad-
joint associated with the true solution operator and an adjoint associated with
the discretization.

5.1 Using modified and continuous adjoints

We note above that both the Taylor series and extrapolation approximation
methods can be obtained by applying the standard dG and cG methods plus
quadrature to a modified equation. We use the respective modified equations to
define adjoints associated with the discrete scheme. We linearize each problem
independently in a neighborhood of a given function. We then define adjoint
problems for those linear problems and use those to derive an a posteriori
error estimate. Any specified smooth function can be used for this approach.
A typical choice is a common steady-state solution, see [7].

We present the result for the Taylor series approximation. We begin by
linearizing N (y, v) about the specified function w(t),

0 = N (y, v) = N (w, v) +

∫ 1

0

N ′(sy + (1− s)w, v; y − w) ds

= N (w, v) + 〈ẏ − ẇ −Aw(y − w), v〉[0,T ]

= 〈Aww − f(w, t), v〉[0,T ] + 〈ẏ −Awy, v〉[0,T ],
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and linearize NP (Y, v) about the same function,

−
N∑
n=1

〈RP (Y ), v〉In = NP (Y, v) = NP (w, v)

+

∫ 1

0

N ′P (sY + (1− s)w, v;Y − w) ds

= NP (w, v) +

N∑
n=1

〈Ẏ − ẇ −APn,wBn,w(Y − w)〉In

=

N∑
n=1

(
〈APn,wBn,ww − f(Pnw, t)〉In

+ 〈Ẏ −APn,wBn,wY 〉In
)
,

where,

Aw :=

∫ 1

0

f ′(sy + (1− s)w, t) ds

APn,w :=

∫ 1

0

f ′(sPnY + (1− s)Pnw, t) ds

Bn,w :=

∫ 1

0

P ′n(sY + (1− s)w) ds

and P ′n denotes the Frechet derivative of the Taylor series map Pn. We then
have the following linearized differential problems,

〈f(w, t)−Aww, v〉[0,T ] = 〈ẏ −Awy, v〉[0,T ] (5.1)

N∑
n=1

(
〈f(Pnw, t)−APn,wBn,ww −RP (Y ), v〉In =

N∑
n=1

〈Ẏ −APn,wBn,wY 〉In
)
.

(5.2)

We now define adjoint problems for these linear problems. For the original
problem (5.1) we have the following adjoint problem: Find ϕw ∈ H1([0, T ];Rd)
such that,{

〈v,−ϕ̇w −A∗wϕw〉[0,T ] = 〈v, ψ〉[0,T ] ∀ v ∈ L2([0, T ];Rd)
ϕw(T ) = ψT

(5.3)

For the modified problem (5.2), we have the following adjoint problem: Find
ϕPw

∈ H1([0, T ];Rd) such that,{∑N
n=1{〈v,−ϕ̇Pw

〉In − 〈Bn,wv,A∗Pn,w
ϕPw
〉In} = 〈v, ψ〉Ω , ∀ v ∈ L2([0, T ];Rd)

ϕPw(T ) = ψT .

(5.4)

Using these adjoint problems, we prove:
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Theorem 5 (Two Adjoint Error Representation Formula) If Y (t) is an
approximation of (4.1) obtained via the cG(q) method with quadrature, and
w ∈ L2([0, T ];Rd), then,

〈e, ψ〉[0,T ] + (e(T ), ψT )

=

N∑
n=1

(
〈RP (Y ), ϕPw

− πkϕPw
〉In︸ ︷︷ ︸

Discretization Contribution

)

+

N∑
n=1

(
〈f(PnY, t), πkϕPw〉In − 〈f(PnY, t), πkϕPw〉In,kn︸ ︷︷ ︸

Quadrature Contribution

)
+
(
y0, ϕw(0)− ϕPw

(0)
)︸ ︷︷ ︸

Explicit Contribution

(5.5)

+

N∑
n=1

(
〈f(w, t)−Aww,ϕw〉In − 〈f(Pnw, t)−APn,wBn,ww,ϕPw

〉In︸ ︷︷ ︸
Difference in Linearization Error

)
where ϕw and ϕPw

are solutions of (5.3) and (5.4) respectives, and πk and
RP (Y ) are as above.

If instead, Y (t) is a dG(q) approximation, then,

〈e, ψ〉[0,T ] + (e(T ), ψT )

=

N∑
n=1

(
〈RP (Y ), ϕPw − πkϕPw〉In −

(
[Y ]n−1, ϕPw(tn−1)− πkϕPw(t+n−1)

)︸ ︷︷ ︸
Discretization Contribution

)

+

N∑
n=1

(
〈f(PnY, t), πkϕPw〉In − 〈f(PnY, t), πkϕPw〉In,kn︸ ︷︷ ︸

Quadrature Contribution

)
+
(
y0, ϕw(0)− ϕPw

(0)
)︸ ︷︷ ︸

Explicit Contribution

(5.6)

+

N∑
n=1

(
〈f(w, t)−Aww,ϕw〉In − 〈f(Pnw, t)−APn,wBn,ww,ϕPw〉In︸ ︷︷ ︸

Difference in Linearization Error

)
Proof We begin by splitting the error,

〈e, ψ〉[0,T ] = 〈y, ψ〉[0,T ] − 〈Y, ψ〉[0,T ]. (5.7)

We deal with each of these terms separately. For the first term, we use y as
the test function in (5.3) to obtain,

〈y, ψ〉[0,T ] = 〈y,−ϕ̇w −A∗wϕw〉[0,T ]

= 〈ẏ −Awy, ϕw〉[0,T ] + (y0, ϕw(0))− (y(T ), ψT )

= 〈f(w, t)−Aww,ϕw〉[0,T ] + (y0, ϕw(0))− (y(T ), ψT ).
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Looking at the second term, we use Y as the test function in (5.4) to obtain,

〈Y, ψ〉[0,T ] =

N∑
n=1

(
〈Y,−ϕ̇Pw

〉In − 〈Bn,wY,A∗Pn,wϕPw
〉In
)

=

N∑
n=1

(
〈Ẏ −APn,wBn,wY, ϕPw

〉In +
(
[Y ]n−1, ϕPw

(tn−1)
))

+ (y0, ϕPw
(0))− (Y (T ), ψT )

=

N∑
n=1

(
〈f(Pnw, t)−APn,wBn,ww −RP (Y ), ϕPw〉In

+
(
[Y ]n−1, ϕPw

(tn−1)
))

+ (y0, ϕPw
(0))− (Y (T ), ψT ).

Then equation (5.7) becomes,

〈e, ψ〉[0,T ] =

N∑
n=1

{〈RP (Y ), ϕPw
〉In −

(
[Y ]n−1, ϕPw

(tn−1)
)

+ 〈f(w, t)−Aww,ϕw〉In − 〈f(Pnw, t)−APn,wBn,ww,ϕPw
〉In}

+ (y0, ϕw(0)− ϕPw
(0))− (e(T ), ψT ).

We can then use Galerkin orthogonality to complete the proof. The proof for
the cG methods is analogous.

A error estimate can also be derived for the extrapolation methods that
use the modified equation (4.2). The estimate is very similar, the two main
differences being in the definition of the residual and of the adjoint of the
modified equation.

The a posteriori results (5.6) and (5.5) are considerably more complicated
to use in practice than the previous a posteriori error estimates. Direct im-
plementation requires the solution of two adjoint problems, while in addition
approximating the adjoint solution ϕ is generally difficult in circumstances
that require the use of explicit methods. Moreover, the contribution from “Dif-
ference in Linearization Error” is problematic to evaluate because it involves
the true solution. In practice, we substitute the numerical solution, but this
requires further manipulation to quantity the effect of this substitution. In
practice, these estimates are often manipulated further to obtain expressions
more amenable to computation plus additional terms that cannot be estimated
but are provably higher order, see [7,8].

5.2 A numerical example

In this section, we explore the connection between stability issues arising with
explicit integration and the differences between the adjoints to the continuous
and modified problems as defined in Theorem 5.
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We consider the solution of the system arising from a method of lines
discretization of the linear heat equation,


ut = uxx, 0 < x < 3π, t > 0,

u(0, t) = u(1, t) = 0, t > 0,

u(x, 0) = u0(x), 0 < x < 3π,

where the initial data is given by u0(x) = sin(x). Using a standard cG(1)
method in space on a uniform mesh with spacing h ≈ .304 gives,

{
u̇ = 1

h2Au, t > 0,

u(0) = u0(x),
, A =


−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

 . (5.8)

We solve (5.8) using the forward Euler method. The dG(0) finite element
method is used to solve the corresponding modified equation. From the point of
view of stability for numerical solution of the full partial differential equation,
the forward Euler scheme with a uniform time step kn must satisfy,

γ :=
kn
h2
≤ 1

2
.

Since instability does not occur in the true solution, the solution of the adjoint
problem (1.2) does not indicate instability. However, the adjoint to the dis-
cretization (5.4) should reflect instability in the numerical solution. We plot
relative error between the modified adjoint ϕPw

and the continuous adjoint
ϕw, i.e.

RE(t) :=
‖ϕw(t)− ϕPw

(t)‖∞
‖ϕw(t)‖∞

where the norms are in RN , for two different values of γ. We consider two
quantities of interest: (1) the average value over the entire spatio-temporal
domain with final time T = 5 and (2) the average over the time interval [0, 3]
× the spatial domain.

We show the results in Fig. 5.1. When γ = .4, the stability condition is
satisfied and there is relatively little difference between the adjoint solutions
for either quantity of interest. However, the stability condition is violated
when γ = .6 and we can see the large difference in the two adjoint solutions.
Examining the results for the second quantity of interest shows that different
quantities may have different stability properties.
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Fig. 5.1 Results for the discretized heat equation. Upper row: Relative difference in the
adjoint solutions when the quantity of interest is the average value over the entire domain
for γ = .4 (left) and γ = .6 (right). Lower row: Relative difference in the adjoint solutions
when the quantity of interest is the average value over the first half of the domain for γ = .4
(left) and γ = .6 (right).

6 Conclusions

We present an a posteriori error analysis for approximate solutions of nonlinear
ordinary differential equations solved with explicit finite difference methods.
To obtain this analysis, we represent two classes of explicit finite difference
methods as finite element methods, whose solution is defined over the entire
domain. In particular, we distinguish between error contributions from the
substitution of an approximation space, the approximation of the differential
operator, and the use of quadrature to evaluate the integrals. This distinction
allows us to determine the best method of adaptation to reduce the error in our
approximation. Finally, we give an adjoint problem for the explicit method,
and show how it can be used to determine numerical stability when compared
with the adjoint of the ODE.
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